Syllabus for Undergraduate Programm Physics Discipline Science & Humanities School Bangladesh Army University of Engineering & Technology (BAUET)

Summary of the courses for B. Sc (Hons.) in Physics

Year-I Semester -I

Course No	Course Title	Hrs/Week	Credit Hrs.
PHY -1101	Mechanics & Properties of Matter	3-0	03
PHY-1103	Waves & Oscillation	3-0	03
PHY -1105	Mathematical Methods in Physics-I	3-0	03
PHY -1102	Physics Sessional - I	0-3	1.5
CHEM-1123	Physical Chemistry	2-0	02
CHEM-1124	Chemistry Sessional - I	0-3/2	0.75
MATH-1141	Mathematics-I	3-0	03
ENG-1133	1133 Basic Skills Development in English 2-0		02
CSE-1123	Computer Fundamentals	2-0	02
CSE-1124	Computer Fundamentals Sessional	0-3/2	0.75
	Total	18-6	21.00

Year-I Semester-II

Course No	Course Title	Hrs/Week	Credit Hrs.
PHY-1201	Atomic & Molecular Physics	3-0	03
PHY-1203	Electricity & Magnetism	3-0	03
PHY-1205	Heat & Thermodynamics	3-0	03
PHY-1202	Physics Sessional - II	0-3	1.5
CHEM-1223	Inorganic & Organic Chemistry	2-0	02
CHEM-1224	Chemistry Sessional – II	0-3/2	0.75
MATH-1241	Mathematics-II	3-0	03
CSE-1223	C – Programming	2-0	02
CSE-1224	C – Programming Sessional	0-3	1.5
	Total	16-7.5	19.75

Year-II Semester -I

Course No	Course Title	Hrs/Week	Credit Hrs.
PHY-2101	Electronics-I	3-0	03
PHY-2103	Optics – I	3-0	03
PHY-2105	Mathematical Methods in Physics-II	3-0	03
PHY-2102	Physics Sessional – III	0-3	1.5
STAT-2123	Statistics	3-0	03
MATH-2141	Mathematics-III	3-0	03
CSE-2124	Database Sessional	0-3	1.5
ECON-2125	Principle of Economics	2-0	02
HSS-2131	Government & Sociology	2-0	02
	Total	19-6	22.00

Year-II Semester -II

Course No	Course Title	Hrs/Week	Credit Hrs.
PHY-2201	Classical Mechanics	3-0	03
PHY-2203	Optics –II	3-0	03
PHY-2205	Statistical Mechanics & Radiation	3-0	03
PHY-2207	Theory of Relativity	3-0	03
PHY-2202	Physics Sessional – IV	0-3	1.5
MATH-2241	Mathematics-IV	3-0	03
CSE-2224	MAT LAB	0-3	1.5
BA-2225	Accounting	2-0	02
	Total	17-6	20.00

Year-III Semester -I

Course No	Course Title	Hrs/Week	Credit Hrs.
PHY-3101	Electronics - II	3-0	03
PHY-3103	Electrodynamics-I	3-0	03
PHY-3105	Elementary Particle Physics	3-0	03
PHY-3107	Mathematical Methods in Physics-III	3-0	03
PHY-3109	Nuclear Physics – I	3-0	03
PHY-3111	Solid State Physics - I	3-0	03
PHY-3102	Physics Sessional – V	0-3	1.5
	Total	18-3	19.50

Year-III Semester -II

Course No	Course Title	Hrs/Week	Credit Hrs.		
PHY-3201	Electronics – III	3-0	03		
PHY-3203	Electrodynamics-II	3-0	03		
PHY-3205	Nuclear Physics – II	3-0	03		
PHY-3207	Quantum Mechanics- I	3-0	03		
PHY-3209	Solid State Physics – II	3-0	03		
PHY-3202	Physics Sessional – VI	0-6	03		
Option-1		3-0	03		
Total 18-6 21.00					

Students will have the option to select any one course from the following courses

PHY-3211	Geophysics	3-0	03
PHY-3213	Meteorology	3-0	03
PHY-3215	Renewable Energy	3-0	03

Year-IV Semester -I

Course No	Course Title	Hrs/Week	Credit Hrs.	
PHY-4101	Advanced Electronics	3-0	03	
PHY-4103	103 Nuclear Physics- III 3-0		03	
PHY-4105	Quantum Mechanics –II	3-0	03	
PHY-4107	Solid State Physics – III	3-0	03	
PHY-4109	Radiation and Health Physics	3-0	03	
PHY-4102	Thesis	0-6	03	
Option-I		3-0	03	
	Total	18-6	21.00	

Students will have the option to select any one course from the following courses

PHY-4111	Computational Physics	3-0	03
PHY-4113	Plasma Physics	3-0	03
PHY-4115	Spectroscopy	3-0	03
PHY-4117	X-ray Crystallography	3-0	03

Year-IV Semester -II

Course No	Course Title	Hrs/Week	Credit Hrs.		
PHY-4201	Biophysics & Medical Physics	3-0	03		
PHY-4203	Fiber Optics and Optical Fiber	3.0	03		
	Communication				
PHY-4205	Quantum Mechanics-III	3.0	03		
PHY-4207	Reactor Physics	3.0	03		
PHY-4202	Thesis	0-6	03		
Option- I		3.0	03		
Total 15-6 18.00					

Students will have the option to select any one course from the following courses

PHY-4209	Material Science	3.0	03
PHY-4211	Methods of Experimental Physics	3-0	03
PHY-4213	Particle and High Energy Physics	3-0	03

Total Credit Hour - 162.25 Credit Hours

Total Credit Hours in Core Courses: 115.50 Credit Hours

Total Credit Hours in Basic Science & Computer Oriented Courses: 29.75 Credit Hours

Total Credit Hours in Humanities & Social Science: 8.0 Credit Hours

Total Credit Hours in Optional Courses: 9.00 Credit Hours

Term Wise Credit Hour Distribution

Year	Semest	Credit Hours					otal
	ei	Core Courses	Basic Science & Computer Oriented Courses	Humanities & Social Science Courses	Optional Courses	Term Wise	Year Wise
1 of	1^{st}	10.50	8.50	2.00 (English)		21.00	40.75
ISt	2^{nd}	10.50	9.25			19.75	40.75
2nd	1 st	10.50	7.50	4.00 (2.0-Govt & Sociology +2.0- Econ)		22.00	42.00
	2 nd	13.50	4.50	2.00 (Accounting)		20.00	
2.1	1^{st}	19.50				19.50	40.50
3rd	2^{nd}	18.00			3.00	21.00	40.50
Ath	1 st	18.00			3.00	21.00	30.00
4th	2^{nd}	15.00			3.00	18.00	39.00
Te	otal	115.50	29.75	8.00	9.00	162.25	162.25

Year-I Semester -I

PHY – 1101: Mechanics and Properties of Matter Credit 03: (3 hours/ week)

Section – A

- 1. Motion in One and Two Dimensions: One dimensional motion with variable acceleration and constant acceleration; Equation of motion in free fall; Projectile motion; Uniform circular motion; Tangential acceleration in circular motion.
- 2. Particle Dynamics and Moment of Inertia: Force; Newton's laws and their applications; Dynamics of uniform circular motion; Moment of inertia; Radius of gyration; Torque; Expression for moment of inertia; Calculation of moment of solids of different shapes.
- **3. Conservation of Momentum and Collisions:** Center of mass and gravity; Linear momentum; Conservation of linear momentum; Impulse; Systems of variable mass; Cross-section; Conservation of linear momentum during collisions.
- 4. **Rotational Kinematics and Dynamics:** Relation with constant angular acceleration; Relation between linear and angular kinematics for a particle in circular motion; Torque acting on a particle; Angular momentum; Conservation of angular momentum; The rotational dynamics of a rigid body.

Section – B

- **5. Gravitation:** Kepler's laws; Newton's law of gravitation; Gravitational attraction; Gravitational potential and field; Determination of gravitational constant; Escape velocity; Motions of planets and satellites.
- 6. Elasticity: Stress and strain; Hook's law; Three types of elasticity; Relation between elastic constants; Poisson's ratio; Yield point; Elastic limit; Elastic fatigue; Limiting value of σ ; Bending of beams; Cantilever.
- 7. Hydrostatic Pressure and Surface Tension: Pressure; Change of pressure with elevation; Measurement of pressure; Surface tension; Molecular theory; Surface energy; Angle of contact; Pressure of a curved membrane; Excess pressure inside a soap bubble; Capillarity; Variation of surface tension with temperature.
- **8. Hydrodynamics and Viscosity:** Concept of fluid flow; Bernoulli's equation; Equation of continuity and their applications; Viscosity; Co-efficient of viscosity; Stoke's law; Critical velocity; Poiseullies equation and its correction; Effect of temperature and pressure on viscosity.

Books Recommended:

- 1. D. Halliday, R. Resnick & K.S. Krane:
- 2. *B. Brown*:
- 3. D.S. Mathur:
- 4. Brij Lal & N. Subrahmanyam:

Physics vol. 1. General Properties of Matter. Properties of Matter. Properties of Matter.

PHY – 1103: Waves and Oscillation Credit 03: (3 hours/ week)

Section-A

- 1. Free Vibration: Harmonic motion; Mathematical representation; Boundary conditions; Vector representation; Velocity, acceleration and their phase relationship; Energy of a harmonic oscillator; Physical and torsional pendulum; Plasma vibration.
- 2. Damped and Forced Vibration: Damping forces; Types of damping; Logarithmic decrement; Relaxation time and quality factor (Q); Electromagnetic damping; Forced oscillator; Steady state and transient solutions; Variation of driving frequency; Examples of resonance.

3. Coupled Oscillators and Normal Modes of Continuous System: Coupled oscillators; Normal coordinates and normal modes; Forced vibration of a coupled oscillator; N-coupled oscillator wave motion as a limit of coupled oscillation.

Section – B

- **4. Fundamentals of Waves:** Wave motion; Types of waves; Wave generation; Wave equation and solution; Energy, power and speed of traveling waves; Plane and spherical waves; Introduction to some wave phenomena in physics.
- 5. Superposition of Periodic Motions: Principle of superposition; Superimposed vibration of equal and different frequencies; Stationary waves; Beats; Combination of two vibrations at right angles; Lissajous figures.
- 6. Sound Waves and Acoustics: Sources; Propagation and speed of sound in fluid and solid media; Musical sound; Doppler's effect; Infrasonic and ultrasonic; Recording and reproduction of sound; General idea of acoustics.

Books Recommended:

- 1. C.A. Coulson:
- 2. *A.B. Wood*:
- 3. *N.W. Molechlan*:
- 4. D. Haliday, R. Resnick & K.S. Krane:
- 5. A. Beiser:

Waves A Text book of Sound Theory of Vibration Physics Vol.1 Main Streams of Physics

PHY – 1105: Mathematical Methods in Physics-I Credit 03: (3 hours/ week)

Section-A

- 1. Vector and Scalar: Vectors; Scalars; Vector algebra; Laws of vector algebra; Unit vector; Rectangular unit vectors; Components of a vector; Scalar field; Vector field; Dot product; Cross product; Triple product; Reciprocal sets of vectors.
- 2. Vector Differentiation: Ordinary derivatives of vectors; Space curve; Continuity and differentiability; Differentiation formulae; Partial derivatives of vectors; Differentials of vectors; Differential geometry; Mechanics.
- **3. Gradient, Divergence and Curl:** The vector differential operator del; Gradient; Divergence; Curl; Formulae involving del; Invariance.

Section – B

- 4. The Divergence Theorem, Stock's Theorem and Related Integral Theorems: Gauss's divergence theorem; Stock's theorem; Green's theorem in the plane; Related integral theorems; Integral operator form for del.
- 5. Curvilinear Co-ordinates: Transformation of co-ordinates, Orthogonal curvilinear co-ordinates; Unit vectors in curvilinear systems; Arc length and volume elements; Gradient, Divergence & Curl; Special orthogonal co-ordinate systems; Cylindrical co-ordinates and spherical co-ordinates.
- **6. Vector Integration:** Ordinary integrals of vectors; Line integrals; Surface integrals; Volume integrals.

Books Recommended

- M.R. Spigel: Vector Analysis and an Introduction to Tensor Analysis
 M.L. Khanna: Vector Analysis
 M.D. Raisinghania: Vector Calculus
 S.A. Sattar: Vector Analysis
- 5. B. Spain: Tensor Calculus
- 6. *H. Lass:* Vector and Tensor Calculus

PHY – 1102: Physics Sessional – I Credit 1.5: (3 hours/week)

- 1. Determination of the Young's modulus and rigidity modulus of a short wire by Searle's dynamic method.
- 2. Determination of the modulus of rigidity of a wire by statical method.
- 3. Determination of the moment of inertia of a fly wheel about its axis of rotation.
- 4. Determination of the value of 'g', acceleration due to gravity, by means of a compound pendulum.
- 5. Determination of the surface tension of water by capillary tube method.
- 6. Determination of the co-efficient of viscosity of a liquid by its flow through a capillary tube.
- 7. Determination of the surface tension of mercury and the angle of contact by Quincke's method.
- 8. Determination of the spring constant and effective mass of a given spiral spring and hence to calculate the rigidity modulus of the material of the spring.
- 9. To show the variation of viscosity of water with temperature.
- 10. Determination of the Young's modulus by flexure of a beam (bending method).

Books Recommended

1.	Giasuddin Ahma and, Md. Shahabuddin:	Practical Physics for Degree Students
2.	C.L. Arora:	B.Sc. Practical Physics
3.	Harnam Singh:	B.Sc. Practical Physics
4.	Kalimuddin:	B.Sc. Practical Physics

CHEM – 1123: Physical Chemistry Credit 02: (2 hours/ week)

Section – A

- 1. Chemical Analysis: Types of chemical analysis; <u>Qualitative analysis</u>, <u>Quantitative analysis</u>, <u>Volumetric analysis</u>; <u>Types of titrations</u>, <u>Requirement of volumetric analysis</u>; Acidemetry and alkalimetry; Primary and secondary standard substance; Different units of concentration; Equivalent weight of an acid, base, salt and oxidizing and reducing agents; Preparation of standard solution; Theory of neutralization reaction.
- 2. Solution: Types of solution; Factors influencing the solubility of a substance; Mechanism of dissolution; Liquefaction of gas; Properties of dilute solution; Osmotic pressure; <u>Raoults' law lowering of vapor</u> pressure elevation of boiling point and depression of freezing point; Their experimental determination.
- **3.** Chemical Kinetics: First and second order reactions and their simple treatment; Simple theories for reaction rate (only outline of Arritenuum theory); Determination of order of reaction; Collision theory.

Section – B

- 4. Electrochemistry: Electrolytic dissociation; Electrolytic conductance measurement; Ionic migration and transport number; Ionic product of water; Solubility product communion effect; e.m.f of cells and their measurements; Buffer solutions; Indications. Concept of pH.
- 5. Chemical Equilibria: Law of mass action; Effects of temperature, pressure and concentration on chemical equilibria; Relationship between k_p , k_c .
- **6. Surface Chemistry and Colloids:** Absorption, Langmuir absorption isotherm; Colloids classification, preparation, purification, properties and importance; Elementary ideas about insulsion and gels.

Books Recommended:

v:
)

- 2. S. Glasstone:
- 3. *P.C. Rakshit*:
- 4. *M.M. Hoque and M.A. Nawab*:
- 5. Bahl and Tuli:

Physical Chemistry Physical Chemistry Physical Chemistry Principles of Physical Chemistry Essentials of Physical Chemistry

CHEM – 1124: Chemistry Sessional-I Credit 0.75: (3 hours/ every alternative week)

Books Recommended:

1.	A.I. Vogel:	Inorganic Qualitative Analysis
2.	Abdus Salam:	Babaharic Ajiba Rasayan
3.	Hazari and Das:	Babaharic Rasayan
4.	Hazari, Das & Dey:	Bislasheya O Babaharic Rasayan

MATH – 1141: Mathematics – I Credit 03: (3 hours/ week)

Section – A

- 1. Set Theory: Sets and subsets; Set operations; Cartesian product of two sets; Relations; Order relation; Equivalence relations; Functions; Images and inverse images; Injective, subjective and bijective functions; Inverse functions.
- 2. **Real Number System:** Field and order properties; Natural numbers; Integers and rational numbers; Absolute value.
- **3. Inequalities:** Arithmetic, geometric and harmonic mean; Weierstrass, Cauchy's and Chebyshev's inequalities.
- **4. Summation of Algebraic Series:** Arithmetic, geometric series; Method of difference; Successive differences; Use of mathematical induction.

Section – B

- 5. Theory of Equations: Synthetic division; Number of roots of polynomial equations; Relations between roots and coefficients; Multiplicity of roots; Symmetric functions of roots; Descarte's rule of signs; Upper and lower limits; Transformation of equations; Solution of cubic and biquadratic equations; Difference equation.
- 6. Complex Number System: Field of complex numbers; Geometric representation; De Moivre's theorem and its applications; Gregory's series; Summation of trigonometric series; Hyperbolic functions; Spherical trigonometry.

Books Recommended:

- 1. R.S. Agarwal:
- 2. Bernard and Child:
- 3. Hall and Knight:
- 4. S. Lipschutz:

Set Theory and Number System Higher Algebra Higher Algebra Set Theory and Related Topics

- 5. Rahman & Bhattacharjee:
- 6. *M. Ray & H.S. Sharma*:

Higher Algebra and Trigonometry A Text Book of Higher Algebra

ENG – 1133: Basic Skills Development in English Credit 02: (2 hours/week)

Section-A

- 1. Word: Word structure; Word formation; Pronunciation and word stress; Word meaning.
- 2. **Parts of Speech:** Types and function.
- **3. Phrase:** Phrase structure and function; Clause and its structure; Punctuation; English sound system; Intonation; Art of speaking; Guideline for improving listening skill.
- 4. Oral Communication Tasks: Interview, dialogue, debate, reception of visitors.

Section-B

- 5. Reading Strategies: Scanning; Skimming; Readers' expectation and context in reading.
- 6. Writing: Approaches to writing (product approach and process approach).
- 7. Modes of Writing: Definition; Description; Narrative; Cause and effects; Art of good writing.
- 8. Writing Tasks: Précis; Paragraph and essay; Letters and application.

Books Recommended:

1.	Thomson & Martinet	: Cliffs TOEFL Guide.
2.	Greenall, Simon and Mich	ael Swan : Effective Reading: Reading Skills for Advanced
		Students. Cambridge University Press.
3.	R. L. Gordon	: Interviewing Strategy.
4.	A. S. Hornby	: Oxford Learner Dictionary.
5.	A. W. Heffernan	: Writing: A College Handbook.

CSE – 1125: Computer Fundamentals Credit 02: (2 hours/ week)

Section-A

- 1. Basic digital electronics; Computer arithmetic; Number system; Decimal; Binary; Octal; Hexadecimal; Integer & floating point representation; Coding: BCD, ASC II; GRAY; EBCDIC etc-their representation & manipulation; Introduction to analog & digital system of electronics; Logic gates: AND, OR, NOT, NOR, NAND, XNOR; Truth Tables; Boolean Algebra; Combinational logic circuits; Half adder; Full adder.
- 2. Computers Architecture & Peripherals: Generation, types, size and capacity; Basic organization of computer: CPU; Arithmetic logic unit; Control unit; Main memory; Buses & peripherals; Different types of memory: RAM, ROM, PROM, EPROM, EEPROM, Bubble and core memory; Elementary ideas about memory management; Ports and peripherals; Serial & parallel communication; 1/0 devices-Bulk storage: DISK, CD, Types etc; Keyboard, monitor, mouse, joystick, scanner, OMR.
- **3. Operating System:** Functions of operating system; Operating system architecture: command processor, scheduler, field manager & resource allocator, dispatcher; Ideas on batch processing, real time processing, multi-programming & multi-processing; Idea about DOS, WINDOWS & UNIX; Language processor: Editor, compiler & interpreter.

- **4. Idea About Computer Networks:** LAN, MAN, WAN; Different network topology; Idea about internet & WWW.
- 5. Microprocessor: Intel 8086.
- 6. **Basic Maintenance of Computer:** Voltage stabilizer, UPS, IPS, Surge protection, Maintenance of disk and storage media; Different utility of software for fault-diagnosis; Idea about computer viruses and antivirus and their uses.
- 7. **Programming Languages:** Basic ideas of algorithm, Flow chart, PDL, Program structure; BASIC/FORTRAN language Constant, variables, subroutines; 1/0 operations; Examples of development of physics programs.

Books Recommended:

- 1. V. Rajaraman:
- 2. S. k. Sarkar and A. K Gupta:
- 3. Peter Norton and John Goodman:
- 4. *Peter Norton:*

Fundamentals of Computers Elements of Computer Science Inside the PC Introduction to Computers

CSE – 1126: Computer Fundamentals Sessional Credit 0.75: (3 hours/ every alternative week)

Introduction to computer; Basic units of a computer; Hardware & software, Operating system; Word processing package; Spread sheet & analysis packages.

Year-I Semester – II

PHY – 1201: Atomic & Molecular Physics Credit 03: (3 hours/ week)

Section-A

- 1. Wave-Particle Duality: Photoelectric effect; Einstein's photoelectric equation and its experimental verification; Photoelectric cells and their application; Compton effect; de Broglie waves; Experimental verification of particle waves: Wave and group velocities.
- 2. Atomic Models: Atomic models; Rutherford's nuclear atom; Atomic spectra; The Bohr model and the structure of atoms; Vector atom model; Atomic excitation; The Franck-Hertz experiment; The correspondence principle; Correction for nuclear motion; Hydrogen-like atoms.
- **3. X-Rays:** Production and properties of X-rays; Continuous and characteristic X-rays; X-ray spectra; X-ray absorption; Moseley's law;

Section – B

- 4. Quantum Mechanical Theory of Hydrogen Atom: Schrödinger equation for the hydrogen atom and magnetic quantum numbers; Electron probability density; Spectrum of hydrogen.
- 5. Electron Spin and Complex Atoms: Spin angular momentum; Exclusion principle; Periodic table; Stern-Garlach experiment; Spin-orbit interaction; Fine structure; Total angular momentum of atoms; Atomic spectra (Helium, Sodium and Mercury); Zeeman effect.
- 6. Molecular Spectra: Molecular spectra of diatomic molecules; Rotational spectra; Vibrational-rotatinal spectra; Molecular quantum states; Dissociation of molecules; Heat of dissociation; UV- spectra; Ramman spectra.

Books Recommended:

- 1. A. Beiser:
- 2. *H. Semat*:
- 3. *J.B. Rajam*:
- 4. Brij Lal & N. Subrahmanyam:
- 5. B.L. Theraja:

Concepts of Modern Physics Introduction to Atomic & Nuclear Physics Atomic Physics Atomic & Nuclear Physics Modern Physics

Section – A

- 1. Electrostatics: Coulomb's law; Electric field; Calculation of E; A point charge in an electric field; A dipole in an electric field; Flux of the electric field; Gauss's law and its applications; Electric potential due to a point charge; Potential due to a dipole; Electric potential energy; Calculation of E from V.
- 2. Capacitor and Dielectrics: Capacitance; Calculation of capacitance; Dielectrics; Parallel plate capacitor with dielectric; Dielectrics and Gauss's law; Energy storage in an electric field.
- **3. Current and Resistance:** Current and current density: Resistance; Resistivity; Conductivity; Ohm's law; Kirchhoff's laws and their applications.

Section – B

- 4. Electromagnetic Induction: Faraday's and Lenz's laws; Self and mutual induction; Solenoids; Growth and decay of current in the circuits of L, C and R combination; Moving coil instruments and galvanometers; Concept of electric generator and motors.
- 5. Magnetic Fields and Interaction: Magnetic force; Magnetic force on charge and current; Biot-Savart's law and its applications; Ampere's law and its applications; Magnetic effects of current.
- **6. Thermoelectricity:** Thermoelectric phenomenon and relation; Thermoelectric power; Thermoelectric diagrams; Thermocouples.
- 7. Alternating Current: Power and power equations; L, C and R in AC circuits; Vector diagram and use of complex quantities; Polar representation of AC circuits; Resonance and anti-resonance circuits; Q-factors; Transformers; AC measuring instruments; AC bridge.

Books Recommended:

1.	D. Halliday, R. Resnick & K.S. Krane:	Physics vol. 2
2.	A. Kip:	Fundamentals of Electricity and Magnetism
3.	K.K. Tewari:	Electricity and Magnetism with Electronics
4.	H.D. Young:	University Physics
5.	J.P. Agarwal:	Circuit Fundamental and Basic Electronics

PHY – 1205: Heat and Thermodynamics Credit 03: (3 hours/ week)

Section – A

- **1. Thermometry:** Types of thermometer: Different scales of temperature; High and low temperature measurement; Platinum resistance thermometer; Thermo-couple; Seebeck effect; Thermoelectric thermometer.
- 2. Kinetic Theory of Gas: Kinetic theory of gas: Expression for the pressure of a gas; Derivation of gas equation; Mean free path; Andrew's Experiment; Van-der Waals equation of state; Critical constants.
- **3. Transmission of Heat:** Thermal conductivity; Rectilinear flow of heat by Searle's method; Lee's methods for bad conductors and liquid; Spherical shell method; Cylindrical flow of heat; Thermal conductivity of glass and rubber.
- **4. Specific Heat and Liquefaction of Gas:** Specific heat of liquid and solid; Newton's law of cooling; Heat capacities; Liquefaction of O₂, H₂ and air.

Section – B

5. The First Law of Thermodynamics: The energy equation; Isothermal and adiabatic changes; Thermal coefficients and their relations.

- 6. The Second Law of Thermodynamics: Reversible and irreversible processes; Carnot's cycle; Heat engines; Absolute scale of temperature; Theorem of Clausius; Entropy; Changes of entropy in reversible and irreversible process; Entropy of a perfect gas.
- Maxwell's Thermodynamical Relations: Thermodynamic variables; Thermodynamical functions and 7. their relations; Gibbs - Helmhotz epuation and Entropy; Joule- Thomson effect; Change of state; Clausius-Clapeyron equation; Phase equation & phase rule; Triple point; Gibb's phase rule and its applications; Heat of reaction; Heat of combustion; Heat of neutralization; Heat of vaporisation; Hess's law.

Text book of Heat

Heat and Thermodynamics

Books Recommended:

- F.W. Sears: Heat and Thermodynamics 1. Heat and Thermodynamics
- 2. M.W. Zemansky:
- 3. T. Hossain:
- Brij Lal & N. Subrahmanyam: 4.

PHY - 1202: Physics Sessional -II Credit 1.5: (3 hours/week)

- 1. Determination of specific heat of a solid by the method of mixture with radiation correction.
- Determination of specific heat of a liquid by the method of mixture. 2.
- Determination of specific heat of a liquid by the method of cooling. 3.
- Determination of thermal conductivity of a bad conductor by Lee's and Chorlton's method. 4.
- 5. Determination of coefficient of thermal conductivity of a metal using Searle's apparatus.
- 6. Determination of the value of an unknown resistance.
- 7. Verification of the laws of series and parallel resistance by means of a post office box.
- 8. Determination of specific resistance of a wire using a meter bridge.
- Determination of the end correction of a meter bridge. 9.
- Determination of Stefan's constant. 10.

Books Recommended

- 1. Giasuddin Ahmad, Md. Shahabuddin:
- 2. C.L. Arora:
- 3. Harnam Singh:
- Kalimuddin: 4.

Practical Physics for Degree Students **B.Sc.** Practical Physics **B.Sc. Practical Physics B.Sc.** Practical Physics

CHEM – 1223: Inorganic and Organic Chemistry Credit 02: (2 hours/ week)

Section – A

- Atomic Structure: Elementary ideas on atomic structure; Electronic configuration of elements. 1.
- Periodic Classification of Elements: Modern periodic table; Periodic classification of elements; 2. Correlation of periodic classification with electronic configuration; Investigation on some periodic properties; Atomic radius; Ionic radius; Covalent radius; Ionization potential; Electron affinity; Electro negativity.
- 3. Group Study of Elements: Alkali metals; Alkaline earth metals; Helogens; Inert gases and transition elements.
- Chemical Bond: Elementary different types of chemical bonding; Concept of hybridization; Molecular 4. orbitals; Bond length and bind strength.

- **5.** Aliphatic Compounds: Nomenclature of organic compounds; Preparation and properties of alcohols; Halides; Aldehydes; Ketones and Carboxylic acids.
- 6. Aromatic Compound: Aromaticity; Orientations; Preparations and properties of Benzene, Phenol, Nitrobenzene and Aniline; Alicyclic and Heterocyclic compounds.

Book Recommended:

1.	S.Z. Haider:	Modern Inorganic Chemistry
2.	T. Moeller:	Modern Inorganic Chemistry
3.	E. Gilreath:	Fundamental Concepts of Inorganic Chemistry
4.	D.K. Seberra:	Electronic Structure and Chemical Bonding
5.	M. Ahmed & A. Jabbar:	Organic Chemistry
6.	I.M. Finer:	Organic Chemistry
7.	B.S. Bahl and A. Bahl:	Advanced Organic Chemistry
8.	Ahmed and Hossain:	Snatak Ajaiba Rasayan (Bangla)
9.	A.K.S. Ahmed:	Ajaiba Rasayan (Bangla)

CHEM – 1224: Chemistry Sessional – II Credit 0.75: (3 Hours / every alternative week)

1. Detection of carbon, oxygen, nitrogen, sulphur and halogen in organic compound.

2. Identification of organic compounds containing different functional groups.

Books Recommended:

1.	A.I. Vogel:	Inorganic Qualitative Analysis
2.	Abdus Salam:	Babaharic Ajiba Rasayan
3.	Hazari and Das:	Babaharic Rasayan
4.	Hazari, Das & Dey:	Bislasheya O Babaharic Rasayan

MATH – 1241: Mathematics – II Credit 03: (3 hours/ week)

Section – A

1. Geometry in Two Dimensions: General equation of second degree; Pair of straight lines; Reduction to standard form of conics; Circle; Parabola; Ellipse; Hyperbola.

Section – B

2. Geometry in Three Dimensions: Equation of plane in Cartesian coordinates of three dimension; Straight line; Sphere; Cylinder; Cone; Ellipsoid; Paraboloid and hyperboloid.

Books Recommended:

1.	R-E.H. Askwith:	Analytic Geometry of Conic Sections
2.	Khosh Mohammed:	Coordinate Geometry
3.	Rahman & Bhattacharjee:	Two & Three dimensional geometry
4.	C. Smith:	Analytic Geometry of Conic Sections
5.	C. Smith:	An Elementary Treatise Geometry
6.	Shanti Narayan:	Analytical Solid Geometry
7.	J.M. Kar:	Analytical Geometry
8.	B.D. Sharma:	Analytical Solid Geometry.

Section – A

1. Elements of Computer Structures and Programming Languages: Number system; Binary arithmetic; Principles of programming; Structured programming concepts; Programming algorithms and flow charts construction; Introduction of C programming language; Basic structure of C program.

Section – B

2. Writing, Debugging and Running programs using C; Variables; Arithmetic expressions; Data types; Operators and expressions; Control flow; Functions and program structures; Pointers and arrays; Structures; Input/output systems in C; Introduction to object oriented programming using C ⁺⁺.

Books Recommended:

- 1. E. Balagurusamy:
- 2. Kerighan and Ritchie:
- 3. *H. Schildt*:

Programming in ANSI C The C Programming Language Mastering Turbo C/C⁺⁺

CSE – 1224: C – Programming Sessional Credit 1.5: (3 Hours/week)

Students will complete at least three projects with proper documentation as assigned by teacher, based on course **CSE-1253.**

Year-II Semester – I

PHY – 2101: Electronics-I Credit 03: (3 hours/ week)

Section –A

- 1. **Circuit Analysis:** Network theorem Nortan's theorem, Thevenin's theorem, Maximum power transfer theorem; Superposition theorem; Wave filter: high pass, low pass, band pass.
- 2. Vacuum Tubes and Gas Filled Tubes: Vacuum tube; Vacuum diode and its characteristics; Vacuum triode and its characteristics; Vacuum tube constants; and their relation; Gas filled tubes; Classification of gas filled tubes; Characteristics of cold-cathode diode; Thyratron; Application of thyratron.
- **3. Atomic Structure:** Bohr's atomic model; Energy levels; Energy bands; Important energy bands in solids; Classification of solids and energy bands.

- 4. Semiconductor Physics: Semiconductor; Energy band description of semiconductors; Effect of temperature on semiconductors; Hole current; Different types of semiconductors; Majority and minority carriers; pn- junction; Properties of pn-junction; Applying voltage across-pn junction; V-I characteristics of pn-junction.
- 5. Semiconductor Diode: Semiconductor diode; Equivalent circuits; Semiconductor diode rectifiers; Halfwave rectifier; Full-wave rectifier; Efficiency of half-wave and full-wave rectifier; Nature of rectifier output; Ripple factor; Filter circuits; Types of filter circuits; Voltage stabilization; Zener diode as a voltage stabilizer.

6. Transistors & Transistor Biasing: Transistor; Transistor action; Transistor connections; Characteristics of CE, CB and CC connection; Transistor as an amplifier in CE arrangement; Transistors load line analysis; Operating point; Cut off and saturation points; Power rating of transistor; Faithful amplification; Transistor biasing; Methods of transistor biasing; Design of transistor biasing circuits; Mid point biasing.

Books Recommended:

1	AP	Malvino
1.	<i>п.</i>	maivino.

- 2. *R.L. Boylestad and L. Nashelsky:*
- 3. *B. Grob*:
- 4. *V.K. Mehta*:

PHY – 2103: Optics – I Credit 03: (3 hours/ week) Electronic Principles Electronic Devices and Circuit Theory Basic Electronics Principles of Electronics

Section – A

- 1. Nature and Propagation of Light: Light and electromagnetic spectrum; Energy and momentum; Speed of light; Doppler effect.
- 2. Plane Waves and Plane Surfaces: Refraction; Huygen's principle; Fermat's Principle.
- **3. Spherical Waves and Spherical Surfaces**: Refraction and reflection at spherical surfaces; Refraction through lenses; Equivalent lens; Cardinal points.
- 4. **Defect of Images and Optical Instruments:** Aberrations; Spherical aberration at a single surface and in a lens; Reducing spherical operations; Coma, Astigmatism; Distortion; Chromatic aberrations; Reducing of aberrations; Microscope; Telescope.

Section – B

- 5. Interference of Light: Division of wavefront and amplitude; Young's experiment; Fresnel biprism; Fringes with quasi-monochromatic and white light; Fringes of equal inclination and thickness; Newton's rings; Michelson interferometer; Mach-Zehnder and Rayleigh interferometers; Michelson stellar interferometer.
- **6. Diffraction:** Fresnel & Fraunhofer diffraction; Diffraction- single slit and double slit; Multiple slits diffraction phenomena; Diffraction gratings; Crystal diffraction; Bragg's law.
- 7. **Holography:** Diffraction from apertures and edges; Production of holograms; LASER properties; Emission and absorption coherence of radiation; General description and theory of LASER; Types of LASER and their application.

Books Recommended:

- R.S. Longhurst:
 D. Halliday, R. Resnick, K.S. Krane:
 O. Svelto and D.O. Hanna:
- 4. *F.A Jenkin and H.E. White*:
- 5. *G.B. Goodhar*:
- 6. A. Ghatak:
- 7. Brij Lal and N. Subrahmanyam:

Geometrical & Physical Optics Physics (Vol.-2) Principle of Lasers Fundamentals of Optics Introduction to Optics Optics A Text Book of Optics

PHY – 2105: Mathematical Methods in Physics – II Credit 03: (3 hours/ week)

Section – A

1. **Matrices:** Types of matrices; Determinant of a square matrix; Matrix equivalence; The adjoint and inverse of a matrix; Orthogonal and unitary matrices; Linear dependence of vectors, Linear equations; Vector spaces, Linear transformations-similarity; Characteristic roots and vector diagonalisation of matrices.

2. Tensor Analysis: Definition; Co-ordinate transformation; Contravarient, covarient and mixed tensor; Kronecker delta; Invarients or scalar; Fundamental operations with tensors; Matric tensor; Crystoffel symbols.

Section – B

3. Complex Variables: Definition of complex number; argand diagram, Complex differentiation and derivatives; Analytic functions; Cauchy-Reimann equations; Cauchy's integral formula and its extension; Cauchy's theorem; Residues at a pole and at infinity; Residue theorems; Definite integrals.

Books Recommended:

1.	D.A. Pipce:	Applied Mathematics for Engineers & Physicists
2.	M.R. Spiegel:	Vector Analysis & an Introduction to Tensor Analysis
3.	M.R. Spiegel:	Complex Variables
4.	M.R. Spiegel:	Theory of Matrices
5.	H. Lass:	Vector and Tensor Calulus
6.	S.L. Ross:	Differential Equations
7.	B.D. Gupta:	Mathematical Physics

PHY – 2102: Physics Sessional – III Credit 1. 5: (3 hours/week)

- 1. Determination of the focal length and hence the power of a convex/concave lens by displacement method with the help of an optical bench.
- 2. Determination of the refractive index of a liquid by plane mirror and pin method using a convex lens.
- 3. Determination of the angle of a prism.
- 4. Determination of the refractive index of the material of a prism.
- 5. Determination of the Cauchy's constants and the resolving power of a prism using a spectrometer.
- 6. Determination of the emf of a cell with a potentiometer.
- 7. To compare the emf of two cells with a potentiometer.
- 8. Determination of the internal resistance of a cell by a potentiometer.
- 9. Determination of the resistance of a galvanometer by half-deflection method.
- 10. To calibrate a meter bridge wire.
- 11. Studying the characteristics of a p-n-p transistor in CE connection.
- 12. Studying the characteristics of pn-junction.
- 13. Verification of the superposition theorem.
- 14. Verification of the maximum power transform theorem.

Books Recommended

Giasuddin Ahmad and Md. Shahabudd	n: Practical Physics for Degree Students
-----------------------------------	--

- 2. *C.L. Arora*:
- 3. *Harnam Singh*:
- 4. *Kalimuddin*:

B.Sc. Practical Physics B.Sc. Practical Physics B.Sc. Practical Physics

STAT – 2123: Statistics Credit 02: (3 hours/ week)

Section-A

- **1. Statistics:** Meaning and scope; Variables and attributes; Collection and presentation of statistical data; Frequency distribution and graphical representation.
- 2. Univariate Distribution: Location; Dispersion and their measures; Skewness; Kurtosis and their measures; Moment and cumulates density function; Binomial, Poisson, normal distributions and their properties.

- **3. Linear Regression:** Linear regression involving nonrandom variables; Principle of least squares; Lines of best fit; Residual analysis.
- 4. Large Sample Test of Significance: Basic ideas about sampling distribution; Population and sample; Tendency of normality of statistics; Standard errors of means; Variances and proportion; Test of significance in large sample; Comparison of means; Proportions and variances; Correlation and regression coefficients.

Section – B

5. Theory of Probability & Probability Distribution: Permutation and combination; Meaning of probability; Mathematical and statistical definition of probability; Sample space event (simple and compound); Marginal and conditional probability; Additive and multiplicative rules of probability; Boys theorem of probability and simple problems in probability; Random variable; Probability function; Probability density function; Distribution: marginal and conditional probability density function; Marginal probability density function; Conditional probability density function. Mathematical expectation; Theorem of expectation; Characteristics function; Cumulants; Binomial; Poisson; Normal; Exponential.

Books Recommended:

1.	A.J.B. Anderson:	Interpreting Data
2.	M.G. Bulmer:	The Elements of Probability Theory
3.	W. Feller:	Introduction Statistics
4.	U. Yule and Kendall:	Introduction to Theory of Statistics
5.	D.V. Lindley:	Introduction to Probability and Statistics
6.	M.G. Mostafa:	Method of Statistics

MATH – 2141: Mathematics – III Credit 03: (3 hours/ week)

Section-A

- **1. Functions:** Domain; Range; Inverse function and graphs of functions; Limits; Continuity.
- 2. Ordinary Differentiations: Differentiability; Differentiation; Successive differentiation and Leibnitz theorem.
- **3. Expansion of Functions:** Rolle's theorem; Mean value theorem; Taylor's Theorem.
- 4. Maxima and Minima: Maxima and minima of functions of one variable.
- **5. Partial Differentiation:** Euler's theorem; Tangents and normals.

Section-B

- 6. Indefinite Integrals: Methods of substitutions; Integration by parts; Special trigonometric functions; Rational fractions.
- 7. **Definite Integrals:** Fundamental theorem of calculus; Properties of definite integrals; Evaluation of definite integrals.
- 8. Improper Integrals: Beta and gamma functions.
- **9. Application of Definite Integral:** Length, area, volume and surface of revolution; Length of plane curves; Area and volume of solid revolution

Books Recommended:

1.	F.Ayres:	Calculus
2.	B.C. Das & B.N. Mukherjee:	Differential Calculus
3.	B.C. Das & B.N. Mukherjee:	Integral Calculus
4.	Kaplan:	Advance Calculus
5.	Muhammad & Bhattacherjee:	Differential Calculus
6.	Muhammad & Bhattacherjee:	Integral Calculus

CSE – 2124: Database Sessional Credit 1.5: (3 Hours/week)

Section – A

- 1. Database Concepts: Files and databases; Database management systems; Data models.
- 2. **Relational Data Model:** Relations; Domains; Attributes and tuple; Anomalies; Functional dependency; First, second and third normal forms; Boyce-Codd normal form; Relational calculus based languages SQL and QBE; Relational algebra and set operations.
- **3. Relational Database Design:** Relational design criteria; Lossless decompositions; Decomposition algorithms, Synthesis; Algorithms.

Section – B

- 4. Advanced Database Concepts: Fourth and fifth normal forms; Object-oriented databases.
- 5. Entity Relationship (ER) Approach: The ER model and its construct; ER modeling in logical database design; Transformation of the ER model to SQL; Distributed database design.
- 6. The MAM Technique: Fact type; Uniqueness constraint; Arity checking; General constraints; Conceptual schema transformations; Relational implementation.

Recommended References:

- 1. Henry F. Korth & Abraham Silberschatz:
- 2. John S. Shepherd:
- 3. John Martin:
- 4. Ullman:

Database System Concepts Database Management: Theory and Application Database Organization Principles of Database Management

ECON – 2125: Principle of Economics Credit 02: (2 hours/week)

Section – A

- **1. Introduction:** Definition and scope of economics; Basic concepts and tools used in economics; Economic problems scarcity and resources.
- 2. Demand Supply and Market Concept of Demand and Supply: Market equilibrium; Determinants of demand and supply-shifting of demand and supply curves; Application of demand and supply; Elasticity of demand and supply.
- **3. Economics of Consumer Behavior:** Utility analysis; Paradox of value; Law of diminishing marginal utility; Indifference curve analysis; Budget constraint; Consumers equilibrium; Change in income and prices; Derivation of demand curves; Income and substitution effects; Consumers surplus.
- **4. Economics of Firm-Production and Costs:** Production function; Law and diminishing return; Stage of production; Law of variable proportion; Short run and long run production and costs.

- 5. Introduction to Macroeconomics: Definition: Macro-economic performance; Measuring national product and national income GNP, NNP, NI: Personal disposable income; National and real GNP; Circular flow of income; Value added.
- **6. Determination of National Income:** Concepts of aggregate demand and planned spending; Aggregate demand; Equilibrium output/income; Change in equilibrium output; Multiplier; Paradox of thrift.
- 7. Money & Banking: Definition and functions of money; Different kinds of money; Banking-Goldsmith banking; Commercial bank and the money stocks; Functions of central bank-money supply; Open market operations; High powered money.

- 1. S. Fisher, R. Dornbusch. & R. Schmalansee:
- 2. Maddala and Miller:
- 3. Hyman:
- 4. A. Roger Arnold:
- 5. S.A.Samuelson, & W. Nordhaus:

HSS-2131: Government and Sociology Credit – 02 (2 hours/ week)

Section: A

1. **Government:** Some basis concepts of government and politics: Functions, organs and forms of modem states and governments; Socialism, fascism, Marxism; U.N.O.; Government and politics of Bangladesh; Some major administrative systems of developed countries; Local self-government.

Section: B

- 2. Basic Concepts of Society: Community, group association, institution; Civilization and culture; Social structure and organization-relation and interaction.
- **3. Migration:** Internal-rural urban and urban-rural inter-regional, push and pull factors of migration; International migration and its impact on the economy.
- 4. **Rural Power Structure and Its Impact on Rural Economy:** Exploitation, poverty, unemployment, landlessness, and migration.
- 5. Social Problems in Urban and Rural Areas: Unemployment, crime, political and social unrest; Poverty, beggary and vagrancy-causes and solutions.

Recommended References:

1.	Bhushan, B:	Dictionary of Sociology
2.	Elbert W.Stewart and James A.Glagnn:	Introduction to Sociology
3.	Horton, P. B. & C.L.Hunt:	Sociology
4.	Morris ginsberg:	Sociology
5.	Martin Slattery:	Urban Sociology
6.	Thomas R.Shannon and Others:	Urban problems in Sociological
		Perspectives
7.	William F.Ogburn and Meyer F.Nimkoff:	A Handbook of Sociology

Year – II Semester – II

PHY – 2201: Classical Mechanics Credit 03: (3 hours/ week)

Section – A

- 1. Variational Principle and Lagrangian Formulation: Variational principle; Constraints; Generalized co-ordmates; D'Alambert's principle; Hamilton's principle; Langrange's equation from D'Alambert's principle; Langrange's equation from Hamilton's principle; Applications of Lagrange's equation.
- 2. The Two-Body Central Force Problem: Reduction to equivalent one body problem; Equations of motion and first integrals; Equivalent one-dimensional problem and classification of orbits; Differential equation for the orbit and integrable Power-Law potentials; The Kepler problem and inverse square law of force; Scattering in a central force field; Transformation of the scattering problem to laboratory co-ordinates.

Section – B

Economics Microeconomics, Theory and Applications Economics Economics Economics

- **3. Rigid Bodies:** Kinematics and dynamics of rigid bodies; Independent co-ordinates: Euler's angles; Force free motion; Euler's equation of motion; Symmetrical top.
- **4. Hamilton's Equation of Motion:** Legendre transformation and Hamilton's equations; Conservation theorem; Derivation from variational principle; Principle of least action and its applications.
- 5. Canonical Transformations: Equations of canonical transformation; Integral invariant of Poincare; Lagrange and Poisson brackets.

Books Recommend:

- 1. G. Goldstein:
- 2. *N.C. Rana & P.S. Joag*:
- 3. S.L. Gupta, H.V Sharma & V Kumar:
- 4. *K.C. Gupta*:

Classical Mechanics Classical Mechanics Classical Mechanics Mechanics of Particle & Rigid Bodies

PHY – 2203: Optics – II Credit 03: (3 hours/ week)

Section – A

- **1. Coherence of Light**: Spatial and temporal coherence; Coherence time and coherence length; Coherence properties of ordinary and laser light.
- 2. **Polarization :** Definition; Plane, circular and elliptic polarization; Polarization by reflection; Brewster's law; Optical activity; Birefringence; Optical axis; Full-wave, half-wave and quater-wave plates; Nicol and Wollaston prisms; Disperson; Cauchy and Sellmeir formulae; Polarization by scattering; Rayleigh scattering; Scattering phenomena in the atmosphere; Faraday, Kerr and Pockels effects.
- **3. Fiber Optics**: Core and cladding; Principle of light propagation through optical fibers; Numerical aperture; Step-index and gradient–index fibers; Optical fiber communications.

Section –B

- **4. Multiple-beam Interference:** Multiple reflections from a plane-parallel plate; Fabry-Perot interferometer; Free spectral range and chromatic resolving power; Single and multilayer films; Mathematical treatment; Anti-reflection coatings; Interference filter problems.
- 5. Fourier Optics: Fourier transforms in two dimensions; Inverse transforms; Dirac delta function; Optical application; Convolution and convolution theorem; Fourier methods in diffraction theory; Lens as a Fourier transformer; Spectra and correlation; Interpretation of Parseval's formula; Auto-correlation and cross-correlation; Wiener-Khintehine theorem.

Books Recommend:

1. 2	E. Hecht: E.A. Jonkins and H.F. White:	Optics Fundamentals of Optics
2. 3.	Born and E. Wolf:	Principle of Optics
4.	Brij Lal and N. Subrahmanyam:	A Text Book of Optics

PHY – 2205: Statistical Mechanics and Radiation Credit 03: (3 hours/ week)

- **1. Statistical Systems:** The scope of statistical physics; Macroscopic and microscopic states; Thermodynamic functions and their equilibrium conditions.
- 2. Phase Space: Phase space and phase trajectory; Density distribution in phase space; Liouville's theorem and its consequence; Postulates of classical statistical mechanics; Ensembles; Ensemble average; Microcanonical canonical and grand canonical ensembles; Use of the ensembles.
- **3. Partition Function:** The evaluation of classical partition function; The semi-classical perfect gas components of the partition function; The Boatman partition function.

4. Statistics and Thermodynamics: Thermodynamic probability; Entropy; Statistical distribution function; Maxwellian-Boltzman statistics and its application.

Section – B

- **5. Quantum Statistics:** Postulates of quantum statistical mechanics; Transition from classical statistics; Indistinguishability and quantum statistics; Exchange symmetry of wave function; Exchange degeneracy; Average value and quantum statistics; The density matrix.
- 6. Quantum Mechanical Gases: Fermi gas; Fermi-Dirac distribution; Fermi energy; Degenerate Fermi system; Heat capacity of free electron gas; Diamagnetism; Paramagnetism; Bose gas; Bose-Einstein distribution; Photon; Phonon; Bose-Einstein condensation; Thermodynamic properties of diatomic molecules; Nuclear spin effects in diatomic molecules.
- 7. **Radiation:** Kirchhoff's Law; Black body radiation; Stefan Boltzman's law; Rayleigh-Jean's law; Wein's radiation law and Planck's quantum law.

Books Recommended:

1.	F. Reif:	Fundamentals of Statistical & Thermal Physics
2.	L.D. Landau & E.M. Lifshitz:	Statistical Physics
3.	C. Kittel:	Elementary Statistical Mechanics
4.	A. Beiser:	Concept of Modern Physics
5.	Brij Lal:	Thermal and Statistical Physics
6.	S.L. Gupta:	Elementary Statistical Mechanics
	*	•

PHY – 2207:- Theory of Relativity Credit 03: (3 hours/ week)

Section – A

- 1. **Special Relativity:** Inertial systems; Michelson-Morley experiment and its explanation; Postulates of the special theory of relativity; Four vectors; Lorentz transformation; Length contraction; Time dilation; Velocity addition; Relativistic mass and energy, Galilean relativity; Newtonian mechanics, Twin paradox; Doppler effect and its application.
- 2. **Relativistic Mechanics:** Mass and momentum; Relativistic energy; Equivalence of mass and energy; Momentum energy four vector; Relativistic force law.

Section – B

3. General Relativity: Mach's principle; Principle of equivalence, Principle of general covariance; Principle of minimum gravitational coupling; Correspondence principle; Field equations of general relativity; Energy-momentum tensor; Maxwell's field equations; Schwarzchild solution; Experimental tests of general relativity; Particle in gravitational field; Gravitational field in relativistic mechanics; Curvilinear coordinates; Distance and time intervals in general relativity; Covariant differentiation; Motion of a particle in a gravitational field; The constant gravitational field; The gravitational field equations: The curvature tensor; The Einstein equations.

Books Recommend:

1.	R. D'Inverno:	Introducing Einstein's Relativity
2.	R. Resnick:	Introduction to Special Relativity
3.	P.G. Bergmann:	Introduction to the Theory of Relativity
4.	J.B. Hartle:	Gravity: An Introduction to General Relativity
5.	A. Beiser:	Concept of Modern Physics

PHY – 2202: Physics Sessional – IV Credit 1.5: (3 hours/week)

- 1. Measurement of dispersive power of the material of a prism by spectrometer using a discharge tube.
- 2. Determination of the radius of curvature of a lens and wavelength of monochromatic light by Newton's ring.
- 3. Determination of the refractive index of a liquid by Newton's ring.
- 4. Determination the wavelengths of various spectral lines by spectrometer using plane diffraction grating.
- 5. Determination the specific rotation of a sugar solution by means of polarimeter.
- 6. Determination of the figure of merit of a galvanometer.
- 7. Determination of high resistance by the method of deflection.
- 8. Determination of the value of low resistance by the method of fall of potential.
- 9. Determination of wavelength of light by diffraction through a single slit.
- 10. Determination of wavelength of light by a biprism.
- 11. Determination of wavelength of light by plane diffraction grating.

Books Recommended

1.	Giasuddin Ahmad and Md. Shahabuddin:	Practical Physics for Degree Students
2.	C.L. Arora:	B.Sc. Practical Physics
3.	Harnam Singh:	B.Sc. Practical Physics
4.	Kalimuddin:	B.Sc. Practical Physics

MATH-2241: Mathematics – IV Credit 03: (3 hours/ week)

Section-A

- **1. Differential Equations:** Definition and classifications of differential equations; Formation of differential equation.
- 2. Solutions of First Order First Degree Equations: Exact equation; Homogeneous equation; Linear and Bernoulli's equation.
- **3. Higher Order Linear Differential Equations:** Higher order linear homogeneous and non-homogeneous equations with constant coefficients; Method of undetermined coefficients; Operator method; Method of variation of parameters.
- **4. Linear Equation With Variable Coefficients:** Cauchy-Euler equation; Factorization of operators; Exact equation.

Section-B

- 5. Total Differential Equation: Integrability condition; Solution method for Pdx+Qdy+Rdz=0 and dx/P=dy/Q=dz/R; Formation of partial differential equations; Linearity of partial differential equations.
- 6. First Order PDE: Solution of first order linear partial differential equations; Lagrange's method.
- 7. First Order Non-Linear PDE: Cauchy's method of characteristics; Charpit's method; Jacobi's method.
- **8. Second order PDE:** Linear PDE with constant coefficients; Equations with variable coefficients; Solution of linear hyperbolic equation; Monge's methods.
- 9. Boundary value problem: Solution of wave equation and heat equation.

Books Recommended:

- *1. Ayres, F*: Differential Equations
- 2. Dennemeyer, R: Introduction to Partial Differential Equations
- 3. Khanna, M. L: Partial Differential Equations
- 4. Sharma, B.D: Partial Differential Equations
- 5. *T Myint U*: Partial Differential Equations

Students will solve the problems of the following topics by using MAT LAB:

Solution of algebraic and trigonometric equations; Graph of functions; Identifications and graphs of conics; Definite and indefinite integrals; Partial differentiation; Rolle's, Mean value and Taylor's theorem; Maxima and minima of functions; Curve tracing; Length, area and volume; Tangent and normal; Matrix algebra; Inverse matrix; Transformation of matrix; Solution of first order first degree ODE; First order higher degree ODE; Higher order linear homogeneous and non homogeneous ODE; Solution of first order PDE; Solution of second order PDE; Solution of boundary value problems (heat equation and wave equation).

BA – 2225: Accounting Credit 02: (2 hours/week)

Section-A

1. Basic accounting principles; Double entry cystic; Journal; Ledger accounts; Trial balance; Cash book; Capital and revenue; Final accounts; Depreciation.

Section – B

2. Preparation of a cost sheet/statement of cost; Materials, overheads, wages and salaries; Reconciliation of cost and financial accounting.

Recommended References:

- 1. *Pyle and White:* Principle of Accounting
- 2. Roger H. Hermanson;
- J.D. Edwards and Roy H. Garrison: 3. Brock and Plamer:

Financial Accounting. Cost Accounting – Principles and Applications.

YEAR – III SEMESTER – I

PHY-3101: Electronics – II Credit 03: (3 hours/ week)

Section-A

- 1. **Transistor Amplifier:** Classification of amplifiers; Single stage and multi-stage transistor amplifiers; R-C coupled and transformer coupled transistor amplifiers; Power amplifier: class A, class B and class C amplifiers; Push-pull amplifier.
- 2. **Power Electronics:** SCR: Construction; V-I characteristics; Applications of SCR; UJT: Construction; V-I characteristics; Applications of UJT; Triac: Construction; Characteristics; Diac: Operation; Characteristics; Application of diac.
- **3. Feedback and Oscillator Circuits:** Feedback: Principles; Characteristics; Current and voltage feedback amplifiers; Positive feedback; Negative feedback; Oscillator: Condition for sustained oscillation; Phase-Shift; Wein-Bridge; Hartley; Colpitt's and Crystal and Relaxation oscillator.
- 4. Solid-State Switching Circuits: Switching circuit; Different types of switch; Multivibrators; Types of multivibrators; Transistor astable multivibrator; Transistor monostable multivibrator; Transistor bistable multivibrator; Differentiating circuit; Integrating circuit; Important applications of diodes; Clipping circuits; Applications of clippers; Clamping circuits; Basic idea of a clamper; Positive clamper; Negative clamper.

- 5. Electronic Devices: FET: Junction field effect transistor (JFET); JFET drain and transfer characteristics; Enhancement MOSFET; Depletion MOSFET; Drain and transfer characteristics of Enhancement and depletion MOSFET.
- 6. **Modulation and Detection :** Types of modulation; AM modulation; Modulation factor; Analysis of amplitude modulated wave; Plate modulated class C amplifier; Grid bias modulation; Demodulation; Linear diode detection; Linear envelop detection; Discriminator circuit.
- 7. Radio Transmitter and Receiver : Transmitter: Classification of radio transmitter; AM transmitter; FM transmitter; Phase modulated type FM transmitter; Reactance tube FM transmitter; Armstrong FM transmitter; Receiver classification: AM receiver; TRF receiver; Superhetrodyne FM receiver; AVC and AFC system.

1.	James J. Brophy:	Basic Electronics for Scientists
2.	R. L.Boylestad, L. Nashelsky:	Electronic Devices & Circuit Theory
3.	J. Millman & A. Grabel:	Microelectronics
4.	V. K. Mehta:	Principle of Electronics
5.	G. K. Mithal:	Electronic Devices & Circuit
6.	G. K. Mithal:	Radio Engineering
7.	Dr.S.L.Gupta and Dr.V. Kumar:	Hand Book of Electronics

PHY - 3103: Electrodynamics-I Credit 03: (3 hours/ week)

Section – A

1. Electromagnetic Field Equations:

a) Review of Maxwell's equations in vacuum and in matter-integral and differential formulation; Boundary conditions at an interface.

b) Vector and Scalar potentials; Gauge invariance; Lorentz and Coulomb gauge; Lorentz force in terms of potentials.

c) Pointing's theorem and Energy-Momentum conservation for electromagnetic fields and charges.

2. Boundary Value Problems in Electrostatics:

a) Poisson equations and Laplace equations; Uniqueness of the solution with Dirichlet of Neumann equation.

b) Method of image charges; Solution of Laplace's equations in two and three dimensions in Cartesian, cylindrical and spherical coordinates; Associated Legendre polynomials and spherical harmonics.

c) Multipole expansion of the potential due to a localized charge distribution; Dipole and quadrupole moments.

d) Field inside dielectrics; Boundary value problems involving dielectrics.

Section – B

- **3. Propagation of Electromagnetic Waves in Isotropic Media:** Boundary conditions on the field vectors; Reflection and refraction of electromagnetic waves; Total internal reflection.
- 4. **Propagation of Electromagnetic Waves in Conducting Media :** Nature of metallic boundary conditions; Metallic reflection; Normal incidence; Oblique incidence; Propagation between parallel conducting plates; Propagation through ionized media; Wave guides; Cavity resonators.
- 5. **Propagation of Electromagnetic Waves in Crystalline Media:** Isotropic and anisotropic crystals; Light propagation in uni-axial crystals; Wave sun face; Internal and external conical refractions; Interference phenomenal in uni-axial and biaxial crystals; Isochromatic surface in uni-axial and biaxial crystals.

Recommended References:

2.

3.

	1.	J. R. Reifz & F. J. Milford:	Foundations of Electromagnetic The
--	----	------------------------------	------------------------------------

W.K.H. panofsky & M. Philiphs: Classical Electricity N. Tralli: Classical El

Classical Electromagnetic Theory

4. D. R., Corson & Lorrain: Introduction to Electromagnetic Fields and Waves Theoretical Physics

Light

5. Joos:

R. W. Ditchburn:

- 6. 7. H. A. Lorentz:
- 8. B. K. Mathur:
- 9. I. C. Stater & Frank:
- 10. M. S. huq, A. K Rafiqullah & A K Roy:
- J.D. Fackson 11.

PHY-3105: Elementary Particle Physics Credit – 03 (3 hours/ week)

Section-A

Theory of Electron Principles of Optics

Electromagnetism

Classical Electrodynamics

Concept of Electricity and Magnetism

- 1. Building Blocks and Classification Schemes: Prologue; Concept of a fundamental particle; The bore atom; Size-mass; Valence electrons; Isotopes; Periodic table; Binding energy; Nucleus.
- 2. The Electron-A Familiar Particle: Production; Charge; Mass; Spin; Magnetic moment; Angular momentum; The exclusion law; Size of the electron; the wave-particle problem; Relativistic effects; Heisenberg uncertainty principle; Chart of the particles stable against decay through nuclear forces; Organization and familiar features; The parameters; Mass particles antiparticles; Spin and statistics; Isotopic spin; Strangeness; Decay times.
- 3. **The Interactions:** Gravity; Electromagnetism; Strong nuclear force; Weak interaction; Discovery of W^{\pm} and Z^0 bosons; Charged current reactions.

Section-B

- 4. The Conservation Laws: Conservation of mass-energy; Conservation of momentum; Conservation of angular momentum; Conservation of electric charge; Conservation of baryons and leptons; Conservation of strangeness; Conservation of parity; Conservation of isotopic spin.
- 5. Leptons, Ouarks and Hadrons: Leptons; Electronic neutrinos; Further generations; Lepton decays and universality; Strongly interacting particles; Quarks; General properties of hadrons; pions and nucleons; Strange particles charm and beauty.

Recommended References:

- 1. B. R. Martin G. Shaw:
- 2. L. B Okun:
- 3. Dan Green:
- 4. L. J Tassi:
- 5. W. R. Leo, Spring verlag:
- 6. Griffiths:

Particle Physics α , β , γ ,...Z, A Primer in Particle Physics Lectures in Particle Physics **Elementary Particle Physics** Techniques for Nuclear and Particle Physics Experiments Introduction to Elementary Particles

PHY -3107: Mathematical Methods in Physics-III Credit 03: (3 hours/ week)

Section – A

- 1. Functions: Bessel's functions; Legendre differential equations; Legendre and associated Legendre polynomials, Hermite differential equation and Hermite polynomials; Hypergeomatric functions; Fourier and Laplace transforms.
- 2. Differential Equations: Idea of differential equations and their solutions; Initial value problems; First order equations: Separable; Homogeneous; Exact and linear equations; Equation reducible to such forms; Application of first order equations (growth, decay, chemical reactions etc.).
- 3. Linear Second Order Differential Equations: Homogeneous equations with constant coefficients; Method of undetermined coefficients and variation of parameters.

- 4. Series Solutions of Second Order Differential Equations: Linear second order differential equations with variable coefficients; Power series solution about an ordinary point; Regular singular point and the method of Frobenius.
- **5. Partial Differential Equations:** Second order constant coefficient equations; Euler's equations; Separation of variables; Waves equations; Heat conduction and diffusion equations; Laplace's equation.

1.	D.A. Pipce:	Applied Mathematics for Engineers & Physicists
2.	M.R. Spiegel:	Vector Analysis & an Introduction to Tensor Analysis
3.	M.R. Spiegel:	Complex Variables
4.	M.R. Spiegel:	Theory of Matrices
5.	H. Lass:	Vector and Tensor Calculus
6.	S.L. Ross:	Differential Equations
7.	B.D. Gupta:	Mathematical Physics
	_	

PHY – 3109: Nuclear Physics-I Credit 03: (3 hours/ week)

Section – A

- **1. The Nucleus:** Rutherford's alpha particle scattering and structure of the nucleus; Theories of nuclear composition; Proton-neutron theory of nuclear composition.
- 2. Basic Properties of Nuclei: Constituents of nuclei; Nuclear mass; Charge and size (mirror nuclei calculations); Nuclear density; Nuclear spin and angular momentum; Nuclear moments; Dipole magnetic moment; Magnetic moment expression; Electric moments (quadruple expressions); Nuclear binding energy; Mass defect; Parity and symmetry; Energy level; Liquid drop model; Bethe-Weizsacker semi-empirical mass formula.
- 3. Natural Radioactivity: Radioactivity; Types of radioactivity; Units of radioactivity; General properties of radioactive radiations; Identification of radioactive elements; Identification of α -particles; Properties of α -rays; Properties of β -rays; Beta disintegration; Conservation of nuclear energy during beta disintegration; Properties of γ -rays; Electron-positron pair production; Gamma decay; Radioactive disintegration; Laws of radioactive disintegration; Radioactive decay constant (λ); Average life;

Method of finding radioactive constant; Determination of half-life; Radioactive series; Similarities between radioactive series; Isotopes; Isobars; Isotones and isodiapheres; Radioactive growth and decay; Radioactive equilibrium; Cerenkov radiations; Secondary radiations; Photographic emulsions; Radiation damage; Applications of radioactive radiations.

4. Artificial Radioactivity: Discovery of artificial radioactivity; Discovery of radio-sodium; Researches in artificial radioactivity; Radioisotopes of transuranic elements; Isotope tables and nuclide charts; Uses of isotopes; Diagnostic applications of radioisotopes; Industrial applications of radioisotopes; Isotopic dating in geology.

- 5. Nuclear Fission and Fusion: Introduction; Discovery of fission; Types of fission reactions; Mass distribution of emission products; Energy distribution of fission products; Neutron emission in nuclear fission; Fissile and fissionable nuclides; Fission energy; Theory of fission process; Explosive chain reaction and critical size; Controlled chain reaction; Nuclear reactor; Power of a nuclear reactor; Neutron balance in a reactor; Multiplication factor; Classification of reactors; Nuclear fusion; Stellar thermonuclear fusion reactions; Proton-Proton chain; Carbon-Nitrogen cycle; Controlled thermonuclear reactions; Conditions for controlled fusion; Hydrogen bomb; Cobalt bomb.
- 6. Nuclear Reactions: Discovery; Production and properties of neutron; Elastic and inelastic scattering; Q-value; Nuclear cross-section; Elementary kinematics; Electron scattering from a nucleus; Form factors; Compound nuclear model; Nuclear cross-section; Brit-Wigner resonance formula; Direct reaction; Butler's theory.
- 7. Nuclear Force: Non-exchange and exchange forces; Meson theory of nuclear force; One-Boson Exchange (OBE) potential; Paris potential; Nuclear stability condition; Symmetry and charge effects; Charge independence of nuclear force; Mirror nuclei and Coulomb energy.

A. Beiser: 1. Concepts of Modern Physics 2. C. M. H. Smith: A Text Book of Nuclear Physics 3. I. Kaplan: Nuclear Physics 4. D. Halliday: Introduction to Nuclear Physics 5. Kenneth, s. Krane: Introduction to Nuclear Physics **Elementary Particle** A.M. Harunur Rashid: 6. Introduction to Nuclear Physics 7. H.A. Enge:

PHY-3111: Solid State Physics – I Credit 03: (3 hours/ week)

Credit 03: (3 hours/ week)

Section-A

- 1. Crystal System: Crystalline and non-crystalline states; Unit cell; Bravais lattices; Miller indices; Simple crystal structures; Packing factor; Inter-planar spacing; Concept of reciprocal lattice; Brillouin zones.
- 2. Crystal Diffraction: Bragg's law; Laue equation; Diffraction of X-rays by crystals; Atomic and crystal structure factors; Thermal vibrations; Temperature factor; Absorption.
- **3. Crystal Bindings:** Crystals of inert Gas; Ionic crystals; Binding energy and bulk modulus; Covalent; Metal and hydrogen bonded crystals.

Section – B

- 4. **Crystal Bonding :** Interatomic forces and crystal bonding; Ionic crystal; Calculation of electrostatic energy; Madelung constant and bulk modulus; Covalent crystals; Crystals of inert gases; Van der Waals and repulsive interactions.
- 5. X-ray Photographs: The production of X-ray; Powder cameras; Powder diffraction patterns; Measurement of powder photographs; Powder and film photographs; Rotation and oscillation photographs; Determination of cell dimension and space group; Collection of crystal structure data; Solid state and metallurgical applications.
- 6. Imperfections in Crystals: Classification of defects; Point defects; Dislocations; Screw and edge dislocations; Diffusion in metals; Plane defects; Crystal grains and grain boundaries; Energy of grain boundaries.

Recommended References:

1.	C. Kittle:	Introduction to Solid State Physics
		2

- 2. A. J. Dekker: Solid State Physics
- 3. M. Omar Ali: Elementary Solid State Physics
- 4. R. L.Singhal: Introduction to Solid State Physics
- 5. Saxena, Gupta & Saxena: Fundamental of Solid State Physics

PHY-3102: Physics Sessional – V

- Credit 1.5 (3 hours/ week)
- 1. To find the vibration of the frequency of a tuning fork with the length of a sonometer (n-l curve) under given tension and hence to determine the unknown frequency of a tuning fork.
- 2. To verify the laws of transverse vibration of a stretched string by sonometer.
- **3.** To verify the laws of transverse vibration of string and to determine the frequency of a turning fork by Melde's experiment.
- 4. "J" by callender and Barne's apparatus (with radiation correction).
- 5. Determine the electro-chemical equivalent of copper/silver with an ampere balance.
- 6. Calibration of an ammeter by potential drop method with the help of a potentiometer.
- 7. Calibration of a voltmeter by a potentiometer.
- 8. Determination of temperature co-efficient of the resistance of the material of a wire.
- 9. Determination of resistance per unit length of a meter bridge.
- **10.** Determination of the boiling point of a liquid by a platinum resistance thermometer. **Books Recommended**
- 1. Giasuddin Ahmad and Md. Shahabuddin: Practical Physics for Degree Students
 - Practical Physics for Degree Students B.Sc. Practical Physics

2. *C.L. Arora*:

27

- 3. Harnam Singh:
- 4. Kalimuddin:

B.Sc. Practical Physics B.Sc. Practical Physics

Year – III Semester– II

PHY-3201: Electronics – III Credit 03: (3 hours/ week)

Section – A

- 1. **Operational Amplifier :** Basic concepts on different amplifier (double ended input, single ended output) as the input stage of an op-amp; Differential and common mode operation; Common mode rejection ratio; Equivalent circuit; Ideal op-amp approximations; Inverting amplifier; Non-inverting amplifier; Adder; Substractor; comparator; Integrator; Differentiator (all analyses based on ideal approximation). Frequency response; Gain-bandwidth product; Active filters; Applications in millivolt meter and current-meter.
- 2. **Pulse Generators:** Multivibrators: Astable monostable and bistable; Schmitt trigger; Blocking oscillators and time-base generators.
- **3. Pulse Shaping:** Pulse parameters; Linear waveshaping: RC integrator and RC differentiator; Non-linear waveshaping: Clipping and clamping.
- 4. Integrating Circuit and Applications: Fabrication of integrated circuits; Operational amplifiers; Active filters; Comparators and control; Mathematical operations, Oscillation; Thin film deposition techniques; Capacitors and resistors.

Section – B

- 5. Binary Number & Codes: Different number systems: Binary numbers; Decimal numbers; Octal numbers; Hexadecimal numbers; Number base conversion; Binary Number: Weighted codes: The 8421 code; Other 4-bit BCD codes; The parity bit; The gray code; Hamming code; Error detection and correction; The ASCII code; Code conversion.
- 6. Boolean Algebra and Logic Gates: Laws and theorems of Boolean algebra; Boolean functions; Simplification of Boolean functions; De Morgan's theorems; Digital Logic Gates: AND gate, OR Gate, NOT gate, NOR gate; The universal building block; XOR and XNOR gates; TTL circuits.
- 7. Simplifying Logic Circuits: Minterm and maxterm; SOP and POS circuits; Algebraic simplification; Map method; Truth table to Karnaugh maps; Simplifications; Tabulation method; Determination and selection of prime-implicants.

Recommended References:

- 1. A. P. Malvino, and Leach. D.P:
- 2. A. P. Malvino:
- 3. Mano, M. Morris:
- 4. Tocci:
- 5. L. Nashelsky,:

Digital Principles and Applications Digital Computer Electronics Digital Logic and Computer Design Digital Systems, Principles and Applications Introduction to Digital Computer Technology

PHY - 3203: Electrodynamics-II Credit 03: (3 hours/ week)

Section-A

- **1. Radiation From Non-Static Charges:** Radiation from an oscillating dipole; Radiation from a half-wave antenna; Radiation from a group of moving charges.
- 2. Radiation From an Accelerated Charge: Lienard and Wicehart potentials; Field of a charge in uniform motion; Fields of an accelerated charge; Radiation fields of charges moving with low velocities.
- **3. Radiation, Scattering & Dispersion:** Forced vibration; Scattering by an individual free electron; Normal and anomalous dispersion; Scattering by a bound electron; Absorption of radiation by an oscillator; Rayleigh scattering; Thomson scattering; Resonance scattering.

- **4. Elements of Magnetostatics:** Calculation of the vector potential for current carrying loop; Boundary value problems in magnetostatics.
- 5. Wave Guides: Solution of the wave equation in a cylindrical and rectangular waveguide; TE, TM and TEM modes and their differences; Cut-off frequencies; phase and group velocities in a waveguide.
- 6. **Relativistic Electrodynamics:** Lagrangian formulation of electrodynamics; Covariant formulation of electrodynamics.

1.	J. R. Reitz & F. J. Milford:	Foundations of Electromagnetic Theory
2.	W.K.H. Panofsky & M. Philiphs:	Classical Electricity
3.	N. Tralli:	Classical Electromagnetic Theory
4.	D. R Corson & Lorrain:	Introduction to Electromagnetic Fields and Waves
5.	Joos:	Theoretical Physics
6.	R. W. Ditchburn:	Light
7.	H. A. Lorentz:	Theory of Electron
8.	B. K. Mathur:	Principles of Optics
9.	I. C. Stater & Frank:	Electromagnetism
10.	M. S. huq, A. K Rafiqullah & A K	<i>Roy:</i> Concept of Electricity and Magnetism
11.	J.D. Fackson	Classical Electrodynamics

PHY-3205: Nuclear Physics-II Credit 03: (3 hours/ week)

Section – A

- 1. Interaction of Charged Particles and Radiation with Matter: Ionisation; Multiples scattering: Stopping power; Range determination; Energy loss of electrons and other charged particles; Straggling; Bremsstrahlung; Interaction of electromagnetic radiation with matter; Positronium; Pair production and pair annihilation; Radiation length.
- 2. Nuclear Detectors: Gas-filled counters; Geiger-Muller counter; Solid state counter; Scintillation counter; Counting statistics; Detection of charged particles; Photons and Neutrons; HPGe detector.
- **3. Accelerators and Sources of Atomic Particles:** Van de Graff accelerator; Cyclotron; Betatron; Proton synchrotron; Neutron sources; Linear accelerator.

Section – B

- **4. Alpha-particle Emission:** Alpha instability; Measurement of energy of alpha-particle and nuclear size; Alpha particle capture; An astro-physical application; Geiger-Nuttal law; Theory of alpha decay and selection rules; Gauge-energy curves.
- 5. Beta Decay: Introduction; Different types of β -decay; Conservation of energy; Conservation of angular momentum; Neutrino hypothesis; Measurement of disintegration energies; Fermi theory of beta decay and selection rules; Range-energy relationship for β -particle; Orbital electron; Capture; Positron emission.
- 6. Gamma Radiation: Interaction and absorption of gamma rays; Measurements of gamma-ray energies and lifetimes of excited states; Internal conversion; Energy measurement; Pair spectrometer; Theory of gamma emission; Mossbauer effect.

Recommended References:

1.	H.A Preston:	Physics and Nucleus
2.	Blatt and Weisskopf:	Theoretical Nuclear Physics
3.	M.A. Enge:	Introduction to Nuclear Physics
4.	R.R Roy, and B.P. Nigam:	Nuclear Physics Theory and Experiment
5.	L.R. Elton:	Introduction to Nuclear Physics
6.	C. M. H Smith:	A Text Book of Nuclear physics
7.	S.E Liverhant:	Elementary Introduction to Nuclear
8.	G Suresh, Feroz Ahmed and L.S Kotheri:	Physics of Nuclear Reactor
9.	Kenneth, S. Krane:	Introductory Nuclear Physics
10.	I. Kaplon:	Nucleus Physics

Section – A

- 1. The Origins of Quantum Theory: Experimental observation (black body radiation, atom model, photoelectric effect etc.) and difficulties in classical theory; Quantization of physical quantities; Basic postulates of quantum mechanics.
- 2. Wave Nature of Matter: Wave particle duality; De Broglie hypothesis; Wavelength and velocity; Phase and group velocity of matter wave; Wave packet; The Heisenberg uncertainty relation and applications.
- 3. The Schrödinger Wave Equation: The development of wave function and its interpretation; Normalization of wave function; Probability and current densities; Expectation values of dynamical variables; The Ehrenfest theorem.

Section – B

- 4. **Fourier Techniques and Momentum Representation:** Fourier analysis of wave function; Fourier integral theorem; Parse Val's formula; Coordinate and momentum representation of wave function; Significance; Schrödinger equation in momentum representation; Momentum wave function for free particle and particle in a box; Box normalization; Dirac delta normalization.
- **5. Operators:** Eigenfunctions and eigenvalues of operators; Expansion in eigenfunctions; Orthogonality of eigenfunctions; Commuting operators and observables; uncertainty relations.

Recommended References:

1.	K. Ziock:	Basic Quantum Mechanics
2.	P. T. Matthews:	Introduction to Quantum Mechanics
3.	S. L. Powell & D Crascmann:	Quantum Mechanics
4.	L. Pauling & B Wilson:	Quantum Mechanics
5.	V. Rojansky:	Introduction to Quantum Mechanics
6.	Gupta, Kumar, Sharma	Quantum Mechanics

PHY-3209: Solid State Physics-II Credit 03: (3 hours/ week)

Section – A

- 1. Classification of Solids and Crystal Lattice: Covalent bond; Hydrogen bonded crystals; Directed bonds; Lattice vibrations and enumeration of normal modes: Infrared absorption; Specific heat of solids.
- 2. Dynamics of Crystal Lattice: Concept of phonon; Elastic vibration of a continuous medium; Onedimensional monoatomic and diatomic lattices; Theories of lattice; Specific heat-Einstein model and Debye model.
- **3. Free Electron Theory:** Energy levels and density of states; Heat capacity of free electron gas; Free electron scattering by single atom; Electrical conductivity and Ohm's law; Thermal conductivity of metals; Wiedemann-Franz Law.

Section -B

- **4. Band Theory of Solids:** The Bloch theorem; The Kronig-Penney model; The motion of electrons in one dimension; Distinction between metals, insulators and intrinsic semiconductors; The concept of a hole.
- 5. Energy Bands and Semiconductors: Nearly free electron model: Energy bands of metal, insulator and semiconductor; Fermi-Dirac distribution in insulators and semiconductors; Electrons, holes and their effective masses; Density of states in intrinsic semiconductors; Impurities in semiconductors; p- and n-type semiconductors; Electrical conductivity and Hall effect; Motion of electrons in one and three dimensions in a periodic potential.
- 6. Magnetism: Origin of magnetism; Classification of magnetic materials; Diamagnetism, Paramagnetism and ferromagnetism; Ferromagnetic domain; Bloch Wall hysteresis loop; Magnetic anisotropy; Antiferromagnets and ferrites.

- 1. A. J. Dekker:
- 2. *C. Kittel:*
- *3. Mckelvey:*
- 4. F. Brailsford:
- 5. Chikazum:
- 6. R.L. Singha:

Solid State Physics Introduction to Solid State Physics Solid State Semiconductor Physics Principles of Magnetism Physics of Magnetism Introduction to Solid State Physics

PHY- 3202: Physics Sessional VI Credit 1.5: (3 hours/ week)

- 1. Determination of mutual inductance for varying distances between the coils.
- 2. Determination of absolute capacity of condenser.
- 3. Charging and discharging of a capacitor.
- 4. Determination of self-inductance by Anderson's method.
- 5. Plotting the characteristic curve for diode valve.
- 6. Drawing of characteristic curves of a triode valve and determination of triode parameters.
- 7. Plot the thermo emf temperature (callibration curve) for given thermo-couple and hence to determine the thermo-electric power.
- 8. Determination of neutral temperature for a given thermocouple.

Optional Courses:

PHY-3211: Geophysics Credit – 03 (3 hours/ week)

Section – A

- 1. **The Solar System:** The planets; Meteorites and their composition; Cosmic ray exposures of meteorites; The pointing-Robertson effect; Compositions of terrestrial planets.
- 2. Rotation and Figure of The Earth: Figure of the earth; Precession of the equinoxes; The Chandler wobble; Tidal friction and the history of the earth-moon system; Fluctuation in rotation and the excitation of the wobble.
- **3. The Gravity Field:** Gravity as a Gradient of the geopotential; The satellite geoid; Crustal structure and the principle of isostasy; Earth tides.

Section – B

- **4. Seismology and The Internal Structure of The Earth:** Seismicity of the earth; Elastic waves and seismic rays; Travel time and velocity depth curves for body waves; Internal density and composition; Free oscillation.
- 5. Geomagnetism: The magnetism of the earth; Fundamental equations; Measurement of the magnetic field; Method of Gauss; Saturation induction magnetometer; Proton precession magnetometer; Alkali vapour magnetometer.
- 6. The Earth's Internal Heat: The geothermal flux; Thermal conduction in the mantle; Temperatures in the interior of the earth; Energy source for the geomagnetic dynamo.
- 7. **Radioactivity and The Age of The Earth:** The pre-radioactivity age problem; Radioactive elements and the principle of radiometric dating; Age of the earth and meteorites; Dating the nuclear synthesis.

Recommended References:

1.	F. D. Stacey:	Physics of the Earth
2.	G.D. Garland:	Introduction to Geophysics: Mantle, Core and Crust
3.	F.S Grant and G.F. West:	Interpretation Theory in Applied Geophysics
4.	D.S. Parasnis:	Principle of Applied Geophysics

5. F.M. Telford; L.P. Geldart R.E. Sheriff. D. A. Keyes:

Applied Geophysics

PHY-3213: Meteorology Credit 03: (3 hours/ week)

Section – A

- 1. **Basic Physics of the Atmosphere:** Composition, classification and structure of the atmosphere; Application of the laws of radiation and thermodynamics; Virtual temperature; Geopotential and geopotential height; Lapse rates; Atmospheric diagrams; Moisture variables; Potential temperature and equivalent potential temperature.
- 2. Cloud and Precipitation Physics: Cloud formation; Cloud water content; Formation of could droplets; Condensation nuclei; Rain drop growth by collision and coalescence; Growth of ice crystals; Growth of hail.
- **3. Atmospheric Dynamics:** Equations of motion for rotating fluids; Substantial derivative, Geostrophic and thermal wind equations; Relationship of wind to pressure and temperature; Vorticity and divergence; Heat momentum and water balances for the general circulation; Movement of long waves; Phase speed; Group speed and energy propagation; Types of energy; Total potential; Unavailable and available energy; The observed creation; Conversion between types and destruction of energy. Eckman spiral; Cyclone decay; Gravity and Lee waves-Air-Turbulence; Static stability and instability.
- **4. Synoptic Meteorology:** Production and transformation of air masses; Depressions and fronts; Frontal characteristics and slope; Constant height and constant pressure analysis; Jet stream.

Section – B

- 5. Radiation: Solar output; Earth input; Planetary energy balance; Plank's law; Stefan Boltzmann law; Wien's law; Kirchhoffs law; Energy balance of surface and atmosphere; Plate-glass models and atmospheres; Radiative/convective equilibrium; Energy balance of clear and cloudy atmosphere transfer; Lone and band absorption.
- **6. Tropical Meteorology:** The ITCZ; Low latitude disturbances; Easterly waves; Tropical cyclones; The monsoon; Types of cumulonimbus convection; Cumulonimbus models.
- 7. Air-Sea Meteorology: Wind and waves; Aero-dynamic roughness; The thermocline; Langmuir cells; Oceanic thermal interia; Sea fog; Organizations and structure of marine meteorological service.
- **8. Satellite Meteorology:** Satellite orbits; Visible and infra-red imaginary; Surface temperature measurements; Use of satellite measurements in forecasting.

Recommended References:

1.	Cels:	Introduction to Meteorology
2.	Haltiner & Martin:	Dynamical Meteorology
3.	Dirtrich:	General Oceanography
4.	Hidy-The Winds:	The origin and behaviour of Atmospheric motion
5.	Greedy :	The Atmospheric Physics
6.	Fleagle & Businger:	Introduction to Atmospheric Physics
7.	Hess,S.L:	Introduction to Theoretical Meteorology
8.	Holton,S.L:	Introduction to Dynamical Meteorology
9.	Rogerse, R.E.:	A Short Course in Cloud Physics
10.	Houghton J.T.	The Physics of Atmosphere
11.	Wallace Hobbs:	Atmospheric Science: An Introduction
12.	Mason, B.J.:	The Physics of Clouds, P.H.P. 1971
13.	Paltridge & Platt:	Radiative Process in Meteorology and
	-	Climatology: Elsevier, 1976
14.	R.S. Scarer:	Cloud Atlas
15.	Н. Н. Lamp:	Climate: Past, Present, and Future
16.	Bayers :	General Meteorology

Section – A

- 1. Introduction: World energy requirement and reserve solar radiation; Solar constant; Measurement of solar radiation; Solar geometry azimuth; Declination day length; Solar time; Solar radiation on tilted surface.
- 2. Radiation Characteristics of Materials: Absorbance emitance, reflectance of selective surfaces; Transmissive optical materials.
- **3. Basic Elements of Heat Transfer:** Modes of heat transfer; Radiation law and radiation heat transfer coefficient; Heat transfer coefficient for natural and forced convection.
- 4. Solar Collectors and Flat-Plate Collectors: Energy balance; Temperature distribution; Collector overall heat transfer coefficient; Collector deficiency factor; Heat removal factor and flow factor; Collector design and performance: Concentrating collectors. Concentration ratio; Thermal and optical performance; Imaging and non-imaging concentration of various types.
- 5. Utilization of Solar Thermal Energy: Energy storage; Solar heating design; <u>Passice application</u>.

Section – B

- 6. Wind Energy: Wind power; Wind power system: transmission, generation and control: Wind mill.
- 7. **Photovoltaics:** Solar cell; Principle of operation; Reflection absorption; Generation, separation and collection of carriers; Efficiency and efficiency limiting factor; Influence of the illumination level on efficiency; Type of solar cells; Crystalline amorphous; Thin films.
- 8. **Photovoltaic Modulus:** <u>Operation: Standard modules;</u> Series and parallel connection of cells; Hot spot formation; Stand-alone photovoltaic systems; System without storage battery; DC to AC conversion.
- **9. Energy Storage:** Process loads and solar collector output; Energy storage in solar process system; Water storage packed; Bed storage; Phase change energy storage; Chemical energy storage.
- **10. Other Non-Conventional Energy:** Biomass; Sources of biomass method of obtaining energy; Water power; Tidal power.

Recommended References:

1.	E. E. Anderson:	Fundamentals of Solar Energy Conversion
2.	Fisk and Anderson:	Introduction to Solar Technology
3.	B S. Magal	Solar Power Engineering
4.	R. C Neville:	Solar Energy Conversion Solar cell
5.	J.Duffie	A Solar Engineering to Thermal Process
6.	G. D Rai:	Solar Energy Utilization
7.	D Rapp:	Solar Energy

Year – IV Semester – I

PHY-4101: Advanced Electronics Credit 03: (3 hours/ week)

- 1. Arithmetic Circuits: Complements: The r's and (r-1)'s complements; Subtraction with r's and (r-1)'s complements; Adders: half-adder and full-adder; Binary parallel adder; Decimal adder; BCD adder; Subtractors: Half-subtractor and full subtractor; Binary multiplier.
- 2. Flip-Flops: SR Latches: Transistor latch; NAND and NOR latch; Clocked SR flip-flop; D-type flipflop; Unclocked and clocked D flip-flop: JK flip-flop; Edge-triggered JK flip-flop; JK master-slave flipflop; Multivibrators.
- **3. Counters and Registers:** Ripple counter; Design of synchronous counter; Parallel counter; Combination counter; BCD shift registers; Decoders: BCD- to decimal decoder; Demultiplexers; Encoders; Multiplexers.
- **4. D/A and A/D Conversion:** Variable-resistor network; Binary ladder; D/A converter; D/A accuracy and resolution; A/D converter; A/D accuracy and resolution; Advanced A/D techniques.

Section – B

- 5. **Memory Devices:** Semiconductor memory technologies; Memory addressing; ROM architecture; Types of PROMs and EPROMs; RAM architecture; Static and dynamic RAM; DRAM; SDRAM; Magnetic core and bubble memory; Cache memory.
- 6. **T.V:** Black and white and colored; Camera their functions.
- 7. **Micro-Wave and Satellite Communications:** Klystron tubes and magnetron tubes as oscillators and amplifiers; Visibility zone; Channels; Servo-control systems.
- 8. Microprocessor: General purpose and special purpose microprocessor; Bit slice microprocessor; Internal organization of 8086, 80x86 microprocessor; Pins and signals; Instructions; Addressing modes; Stack; Subroutine; Interrupt and interrupt service routine.

Recommended References:

- 1. A. P. Malvino, and Leach. D.P:
- 2. A. P. Malvino:
- 3. Mano, M. Morris:
- 4. Tocci:
- 5. L. Nashelsky:

PHY-4103: Nuclear Physics-III Credit 03: (3 hours/ week)

Digital Principles and Applications Digital Computer Electronics Digital Logic and Computer Design Digital Systems, Principles and Applications Introduction to Digital Computer Technology

Section – A

- 1. **Two-Nucleon System the Deuteron:** Central potentials; Ground state of the deuteron; Normalisation of the deuteron wave function; Non-existence of excited states; Tensor force; Magnetic and quadrupole moments of the deuteron.
- 2. **Two-Nucleon System Scattering:** N-P and P-P scattering at low and high energies; Spin dependence of N-P scattering; Phase shift; Scattering length and effective range theory; Coherent scattering of thermal neutrons.
- **3. Neutron Physics:** Sources of neutrons; Interactions of neutrons with matter; Thermal neutrons; Cross-section for neutron induced reactions; Scattering; Absorption and activation cross-sections.

Section – B

- 4. Nuclear Shell Model: Shell-model; Single particle potentials; Wave function and energy levels; Magic numbers; Prediction of spin and magnetic moments; Schmid values and lines; L-S coupling and j-j coupling.
- 5. Collective Model: Rotational energy spectrum and nuclear wave function for even-even nuclei and for odd-odd nuclei; Beta and gamma vibrations in nuclei.
- **6. Optical Model:** Optical potential energy; Averaged cross section; Optical model at low energy; Phenomenological optical model.

Recommended References:

- 1. H.A Preston:
- 2. Blatt and Weisskopf:
- *3. M.A. Enge:*
- 4. R.R Roy, and B.P. Nigam:
- 5. L.R. Elton..:
- 6. *C. M. H Smith:*
- 7. S.E Liverhant:
- 8. G Suresh, Feroz Ahmed and L.S Kotheri:
- 9. Kenneth, S. Krane:
- 10. I. Kaplan:

Physics and Nucleus Theoretical Nuclear Physics Introduction to Nuclear Physics Nuclear Physics Theory and Experiment Introduction to Nuclear Physics A Text Book of Nuclear Physics <u>Elementary Introduction to Nuclear</u> <u>Physics of Nuclear Reactor</u> Introductory Nuclear Physics Nuclear Physics

Section – A

- 1. **One Dimensional Problem With Schrödinger Equation:** Free particle in quantum mechanics; Particle in a potential (step, square well, etc.) barrier; Reflection and transmission co-coefficients; Energy levels calculation; Tunneling through a potential barrier; Linear harmonic oscillator.
- 2. The Schrödinger Equation in Three Dimensions: Separation in Cartesian and polar coordinates; Central force problem; The free particle and free particle in a box; Three dimensional square well potential and harmonic oscillator.
- **3. The Hydrogen Atom:** Schrödinger equation for hydrogen atom; Solution in spherical coordinates; Energy levels; Spherical harmonics.

Section – B

- 4. **Operators and Matrices:** Linear operators kets and bras; Eigenvalues and eigenkets; Expansion in eigenkets; Completeness and orthogonality of eigenkets; Representation of and operator; Commuting operators; Projection hermitian and unitary operators; Diagonalization of a matrix.
- 5. Matrix Formulation of Quantum Mechanics: State vectors; Linear vector spaces; Hilbert space; Orthonormal system; Matrix representation of state vectors and operators; Change of representation; Simple harmonic oscillator.
- 6. Dynamical Behaviour of a Quantum System: Schrödinger; Heisenberg and interaction pictures.

Recommended References:

1.	K Ziock:	Basic Quantum Mechanics
2.	P. T. Matthews:	Introduction to Quantum Mechanics
3.	S L Powell & D Crascmann:	Quantum Mechanics
4.	L Pauling & B Wilson:	Quantum Mechanics
5.	V Rojansky:	Introduction to Quantum Mechanics
6.	Gupta, Kumar, Sharma	Quantum Mechanics
	-	

PHY-4107: Solid State Physics- III Credit 03: (3 hours/ week)

Section – A

- 1. **Dielectric Properties:** Macroscopic electric field; Local electric field; Dielectric constant; Electronic, ionic and orientational polarizabilities; Clausius Mossotti relation; Measurement of dielectric constant; Dielectrics in an AC field; Relaxation and dielectric loss.
- 2. Optical Phenomena in Solids: Colour of crystals; Weakly and tightly bound excitons; Photoconductivity; Traps; Crystal counters.
- **3.** Thermal Properties of Solids: Specific heats of solids; Breakdown of classical theory; Einstein theory; Debye theory and its modification by Born; Gruneisen constant; Harmonic crystal interaction; Thermal expansion; Thermal conductivity; Thermal resistivity; Umklapp process.

- **4. Electrical Properties of Solids:** Dielectric and ferroelectric properties of solids; Dielectric constant and polarizability; Liddane- Sachs- Teller relation; Dielectric relaxation time; Dipole theory of ferroelectricity; Antiferro electricity; Piezo electricity.
- 5. Superconductivity: Introduction; Zero resistance; Meissner effect; Critical field; Two fluid model; Intermediate states; Persistent current; Type I and type II superconductors; Isotope effect; Thermodynamics of superconductivity; London equation; Cooper pairs; Brief ideas on BCS theory and its application.
- 6. Photoconductivity and Luminescence: Historical survey; Photo conducting materials; Electron transition in photoconductors; General mechanism; Photosensitivity; Capture cross section; Simple model of photoconductor; Exciton; Absorption; Trapping and its effect; Luminescence; Models of Luminescence; Comparison with experiment; Thallium activated alkali halides; Electron luminescence.

- *1. A. J. Dekker: 2. C. Kittel:*
- *2. C. Kittel: 3. Mckelvey:*
- 4. F. Brailsford:
- *4. F. Bransfora: 5. Chikazum:*
- 6. R.L. Singha:

Solid State Physics Introduction to Solid State Physics Solid State Semiconductor Physics Principles of Magnetism Physics of Magnetism Introduction to Solid State Physics

PHY- 4109: Radiation and Health Physics Credit – 03 (3 hours/ week)

Section- A

- 1. Interaction of Radiation With Matter: Beta Rays; Range-energy relationship; Mechanisms of energy loss (Ionization and Excitations; Bremsstrahlung); Alpha rays; Range-energy relationship; Energy transfer; Gamma rays; Exponential absorption; Interaction mechanisms; Neutrons; Production; Classification; Interaction; Scattering; Absorption; Neutron activation.
- 2. Radiation Dosimetry: Units; Absorbed dose; Exposure; Exposure measurement; The free air chamber; Exposure measurement; The air wall chamber; Exposure dose relationship; Absorbed dose measurement; Brag-Gray principle; Kerma; Source Strength; Specific gamma ray emission; Internally deposited radioisotopes; Corpuscular radiation; Effective half-life; Total dose; Dose commitment; Gamma emitters; MIRD method; Neutrons.
- **3. Biological Effects of Radiation:** Dose-response characteristics; Direct action; Indirect action; Radiation effects; Acute effects; Delayed effects; Risk estimates; BEIR III; Relative Biological Effectiveness (RBE) and Quality Factor (QF); Dose equivalent; The Sievert (and the Rem); High energy radiation.
- 4. Radiation Protection Guides: Organizations that set standards; International Commission on Radiological Protection; International Atomic Energy Agency; International Labour Organization; International Commission on Radiological Units and Measurements; National Council on Radiation Protection and Measurements; Philosophy of radiation protection; Basic radiation safety criteria; Effective dose equivalent; Exposure of individuals in the general public; Exposure of populations; Medical exposure; Allowable Limit of Intake (ALI); Inhaled radioactivity; Derived air concentrations (DAC); Gastrointestinal tract; Combined exposure; Basis for radiation safety regulations; Calculation of MPC in drinking water based on dose to critical organ; Concentration in drinking water based on comparison with radium; Airborne radioactivity; Maximum permissible concentrations for non occupational exposure.

Section- B

- 5. Health Physics Instrumentations: Radiation detectors; Particle counting instruments; Gas-filled particle counters; Ionization chamber counter; Proportional counter; Geiger counter; Quenching a Geiger counter; Resolving time; Measurement of resolving time; Scintillation counters; Nuclear spectroscopy; Cerenkov detector; Semiconductor detector; Dose-measuring instruments; Pocket dosimeters; Film badges; Thermoluminescent dosimeter; Ion current chamber; Neutron measurements; Detection reactions; Neutron reactions; Neutron counting with a proportional counter; Long counter; Proton recoil counter; Neutron dosimetry.
- **6. External Radiation Protection:** Basic principles; Techniques of external radiation protection; Time; Distance; Shielding; X-ray shielding; Beta ray shielding; Neutron shielding.
- 7. Internal Radiation Protection: Internal radiation hazard; Principles of control; Control of the source; Confinement; Environmental; Control of man; Protective clothing; Respiratory protection; Surface contamination limits; Waste management; High level liquid wastes; Intermediate and low level liquid wastes.
- **8. Criticality:** Criticality hazard; Nuclear fission products; Criticality; Multiplication factor; Four factor formula; Nuclear reactor; Reactivity and reactor control; Fission product inventory; Criticality control.

Recommended References:

A.Martin and S.A. Harbison:

4.

1.	Herman Cember:	Introduction to Health Physics
2.	Fayez Ahmed Khan:	Physics for Radiotherapy
3.	R.E. Lapp and H.L Andrews:	Nuclear Radiation Physics

An Introduction to Radiation Protection

Optional Courses

PHY-4111: Computational Physics Credit 03: (3 hours/ week)

Section- A

- **1. Introduction:** Physics and Computational Physics.
- 2. Overview of Use of Computation in Classical and Quantum Physics: Introduction to computer algorithms and languages.
- **3. Basic Numerical Methods:** Interpolations and approximations; Differentiation and integration; Zeroes and extremes of a single-variable function; Classical scattering; Iterative procedures for special functions; Discritization; Numerical quadrature; Random number generators.
- 4. Numerical Methods for Matrices: Basic Matrix operations; Linear equation systems; Zeroes and extremes of a multivariable function; Eigenvalue problem; The Faddev-Leverrier method; The Lanczos algorithm and the many-body problem; Random matrix.
- 5. Ordrnary Differential Equations: Initial-value problems; the Euler and Picard methods; the Runge-Kutta method; Boundary-value and eigenvalue problems; Linear equations and Sturn-Liouville problems; The one dimensional Schrodinger equation; Numerov's algorithm for the radial Schrodinger equation.

Section- B

- **6. Partial Differential Equations:** Partial differential equation in physics; Separation of variables; Discretization of the equation; The matrix method for differential equations; Initial value problems.
- 7. The Monte Carlo Method: Introduction; Monte Carlo integration; Monte Carlo for the <u>Ising model</u>; Monte Carlo simulation of a monatomic gas; Renormalization with Monte Carlo simulation; Variational quantum Monte Carlo simulation; Green's function Monte Carlo simulations; Path-integral Monte Carlo simulation; Quantum lattice model.
- **8. Symbolic Computing:** Symbolic computing systems; Basic symbolic mathematics; Computer calculus; Linear system; Non-linear system; Differential equations; Computer graphics.
- **9. High-Performance Computing:** The basic concepts; High-performance computer systems; Parallelism and parallel computing; Data parallel computing; Distributed computing and message passing.

Recommended References:

1.	Tao Pang:	An Introduction to Computational Physics.
2.	I. M. Thijssen:	Computational Physics
3.	Harvey Gould and Jan Tobochnik:	An Introduction to Computer Simulation Methods (part 1
		and part 2)

4. S. Wolfram:

The Mathematica Book.

5. D. M Cook and others: A Comparison of Several Symbol, Manipulating Programs, Part I and II.
 PHY – 4113: Plasma Physics

Credit 03: (3 hours/ week)

- **1. Introduction:** Occurrence of plasma in nature: Definition; Concept of temperature; Debye shielding; The plasma parameter; Criteria of plasma; Application of plasma physics.
- **2. Single Particle Motions:** Uniform E and B field; Non-uniform B and E fields; Time varying B and E fields; Adiabatic Invariants.
- **3. Plasma as Fluids:** Relation of plasma physics to ordinary electromagnetic theory; The fluid equation of motion; Fluid drifts perpendicular to B; Fluid drifts parallel to B; The plasma approximation.
- 4. Waves in Plasmas: Representation of Waves: Group velocity; Plasma oscillations; Electron plasma waves; Sound waves; Ion waves; Validity of the plasma approximation; Comparison of ion and electron waves perpendicular to B; Electromagnetic waves with B-O, perpendicular to and parallel to B; Hydromagnetic waves: Magnetosonic waves and CMA diagram.
- 5. **Diffusion and Resistivity:** Diffusion and mobility in weakly ionized gases; Decay of a plasma by diffusion; Steady state solutions; Recombination and diffusion across a magnetic field; Collisions in fully ionized plasma; The single fluid MHD equations; Diffusion in fully ionized plasma; Solutions of the diffusion equation and Bolun diffusion and neoclassical diffusion.

Section – B

- **6. Equilibrium and Stability:** Hydro-magnetic equilibrium; Diffusion of magnetic field into a plasma; Classification of instabilities; <u>Two sream instability</u>; Resistive drift waves and the Weibel instability.
- 7. **Kinetic Theory:** The meaning of (V); Equations of kinetic theory; Derivation of the fluid equations; Plasma oscillations and Landau damping; Physical derivation of Landau damping and Van Kampen modes; Ion Landau damping and Kinetic effects in a magnetic field.
- 8. Nonlinear Effects: Sheaths; Ion acoustic shock waves; The ponderomitive force; Parametic instabilities; Plasma echoes: nonlinear Landau damping and equations of nonlinear plasma physics.

Recommended References:

- 1. Francis F Chen: Plasma Physics
- 2. James E Drummond: Plasma Physics
- 3. Thomas Howard Stix: The Theory of Plasma waves
- 4. *Ronal C. Davidson:* Methods in Nonlinear Plasma Theory

PHY-4115: Spectroscopy Credit – 03 (3 hours/ week)

Section – A

- 1. The Scattering of X-rays: Scattering by a pair of electrons; Scattering of X-rays by gasses and liquids; X-ray emission and absorption spectra; Dipole; Forbidden and satellite lines; Non-diagram lines; Energy level diagrams.
- 2. **Physical Processes of X-ray Absorption:** Chemical effects in X-ray spectra; Fine structure of absorption edges XANES and FXAFS and their applications.
- **3. Experimental Techniques of X-ray Spectroscopy:** Bragg and double crystal spectrometers; Focussion spectrographs; Methods of detection and measurement.

Section – B

- **4. Nuclear Magnetic Resonance Spectroscopy:** Chemical shift; Dipolar interaction; Spin interaction; Magnetic equivalence; Experimental techniques and applications.
- 5. **Mossbauer Spectroscopy:** Isomer shifts; Quadruple splitting; Nuclear Zeeman splitting; Experimental techniques and applications.
- 6. **Photoelectron Spectroscopy:** Main features of photoelectron spectra; Experimental methods; Atomic photoelectron spectra; Molecular photoelectron spectra applications.

Recommended References:

1.	L. U. Azaroff:	X-ray Spectroscopy
2.	D. K. Agarwal:	X-ray Spectroscopy
3.	A. H. Compton & S. K. Allison:	X-rays in Theory and Experiment
4.	C. Bonnele & C. Mande:	Advances in X-ray Spectroscopy
5.	R. Chang:	Basic Principles of Spectroscopy
PHY- 4117: X-ray Crystallography		

PHY- 4117: X-ray Crystallography Credit 03: (3 hours/ week)

Section-A

- 1. Geometry of Crystalline State: Crystal classes and systems; Bravais lattices; Symmetry elements; Point group and space group.
- 2. Diffraction of X-ray by Crystals: Diffraction of X-ray; Electrons and neutrons by crystals; Laue equations and Bragg equation; Structure factors; Symmetry of X-ray diffraction pattern; Reciprocal lattice.
- **3. Experimental Technique of X-ray Diffraction:** Powder method; Laue, oscillation/rotation and Eissenberg methods; Diffractometers; Interpretation of diffraction photographs: Corrections of experimental data; Lorentz and polarization factors; Temperature factor; Absorption correction.

- 4. The Fourier Series: Fourier coefficients; Fourier and difference Fourier synthesis; Convolution; Electron Density; Diffraction and Fourier transform.
- 5. Determination of Space Group: The symmetry of X-ray photographs; Systematic absences; Intensity statistics: Moment tests.
- 6. Determination of Crystal Structure: The Patterson function; Sharpened Patterson; Harker line and section; The heavy atom method; Inequality relationship; Sign relationships and phase relationships.
- 7. Refinement of Crystal Structure: Different Fourier method and the method of least squares.

Books Recommended:

1.	MM Woolfson:	X-Ray Crystallography
2.	H Lipson & W Cochran:	Crystalline State. Vol III
З.	M. J. Burager:	X-Ray Crystallography
4.	L Azaroff:	Elementary X-Ray Crystallography
5.	H Lipson & Taylor:	Fourier Transforms and X-Ray Diffraction
6.	M. M. Woolfson:	Direct Methods in Crystallography
7.	Stout & Jensen:	Practical Structure Determination

Year-IV Semester-II

PHY-4201: Biophysics and Medical Physics Credit – 03 (3 hours/ week)

Section- A

- 1. Properties and Structure of Macromolecules: Atomic and molecular forces; Nucleic acids (DNA, RNA); Methods of replication; Aminoacids.
- 2. The Cell Membrane: Properties of membrane; Transport and diffusion of ions and molecules through the cell membrane; Basic physics of membrane potentials; Measurement of membrane potentials; Membrane model.
- 3. Basic Enzyme Behavior: Michelis Manten mechanism and MWC model.
- 4. Neuromuscular Physics: Overview of the central nervous system; Origin of resting and action potentials in neurons and muscle fibes; Propagation of action potentials through neuromuscular system; Huxley-Hodgkin theory; Neurotransmitters.
- 5. Physics of the Cardiovascular System: Introductory concepts; Bernoulli's principle applied to cardiovascular system; Generation of Korotkoff sound and indirect measurement of blood pressure.

Section-B

- Physics of the Heart: Electrical activity of heart; ECG/EKG measurement; Typical waveforms and 6. physiological origins of the major peaks in the wave form; Artificial pacemaker.
- 7. Imaging Techniques: Nature; Production and detection of ultrasounds; A-scan; B-scan; M-scan; CT; MRI and gamma camera; Clinical applications.
- 8. Image Processing and Analysis : Digital image fundamentals; Image smoothing; Restoration and enhancement; Image segmentation and pattern recognition.
- 9. Nuclear Medicine: Principle; Choice of radionuclide and radiopharmaceuticals; Technetium generator; Imaging and function test of thyroid, gland, liver, spleen, kidney, lungs, brain, heart, and bone.
- 10. X-rays and Radiation Therapy: Production and clinical applications of X-rays; Principles of radiation therapy, Radiotherapy treatment planning; Isodose curve; Simulator; Teletherapy; Brachytherapy.

Recommended References:

- 1. B.H. Brown and R.H Small wood: Medical Physics and physiological Measurements Medical Physics
- 2. J.R Cameron and J. Skofronick:
- 3. B.H. Brown and R.H Small wood,

	D.C Barber, P V Lawford and D R Ho	se:Medical Physics and Biomedical Engineering
4.	Cromwell:	Biomedical Instrumentation and Measurement
5.	Guyton :	Textbook of Medical Physiology
6.	P Sprawls:	Physical Principle of Medical Imaging
7.	Refael C.Gonzale, R.E. woods:	Digital Image Processing
8.	W.E Hande:	Medical Physics of Radiation Physics

- 9. Johns and Cunnighum:
- 10. Cesareo, R. et al:

11. H. Chember:

Physics of Radiology Nuclear Analytical Techniques in Medicine Introduction to Health Physics

PHY-4203: Fiber Optics and Optical Fiber Communication Credit – 03 (3 hours/ week)

Section – A

- 1. Introduction: Historical Development; Basic optics for optical; Plane circularly and elliptically polarized waves; Reflection at a plane of interface; Total internal reflection; Concept of coherence and diffraction of Gaussian beams.
- 2. Basic Characteristics of Optical Fiber: The numerical aperture the coherent bundle; Attenuation in optical fibers; Pulse dispersion in step index optical fiber; Loss mechanism absorption and radiative loss pulse dispersion in graded index optical fiber; Effect of the material dispersion of the optimum profile; Calculation of material dispersion in pure and doped silica.
- **3. Fabrication of High Silica Optical Fibers:** MCVD process; Tube diameter control; Hydroxyl impurity reduction; Deposition temperature; Fiber drawing diameter control; Strength; Surface treatment; Dust particle in the furnace; Humidity and primary coating.

Section – B

- 4. Sources for Optical Fiber Communication: Communication requirements; Laser fundamentals; Semiconductor laser; Absorption and emission in semiconductor; Optical gain in a semiconductor; Gain forward based p-n junction; Laser oscillation and threshold current; Laser diode characteristics; LED characteristics.
- 5. Detectors and Design Considerations for Optical Fiber Communication: Principle of optical detection; PIN photodetector: Its responsibility and quantum efficiency; APDs; Design considerations for optical communication system; Analog and digital modulation; Noise in detection process; Bit error rat; System design and maximum transmission distance due to attenuation.
- 6. Optical Fiber Amplifiers and Integrated Optics: Optical amplification; Semiconductor laser amplifier; Fiber amplifier; Rare earth doped fiber amplifier; Kaman and Brillouin fiber amplifier; Integrated optics; Some integrated optical devices; Beam splitters; Directional couplers and switches; Modulator.
- 7. Application and Future Developments of Optical Fibers: Public network applications; Military applications: Civil; Consumer and industrial applications; Optical sensor system; Computer applications and local area networks.

Recommended References:

- 1. Ajoy Ghatak and K Thyagarajan:
- 2. T Izawa and S Sudo:
- *3. John M. Senior:*

Introduction to Fiber Optics Optical Fibers, Materials and Fabrication Optical Fiber Communications, Principle and Practice

PHY-4205: Quantum Mechanics-III Credit 03: (3 hours/ week)

Section – A

- 1. Angular Momentum: Angular momentum and its matrix representation.
- 2. Symmetry in Quantum Mechanics: Space and time displacements; The group concept; Rotation; Angular momentum and unitary group; Combination of angular momentum states and tensor operators; Space inversion and time reversal; Dynamical symmetry.
- **3. Approximation Methods:** WKB approximation method; Time independent and time-dependent perturbations; Density of states and transition probability; Applications; Zeeman effect and Stark effect.

- **4. Theory of Scattering:** Scattering of particles by spherically symmetric potentials; Partial waves phase shifts; General formulation of scattering theory; Born's approximations.
- 5. **Identical Particles:** Symmetric and antisymmetric wave functions; The exclusion principle; Spin and statistics; Spin matrices.

PHY – 4207: Reactor Physics

1.	K. Ziock:	Basic Quantum Mechanics
2.	P. T. Matthews:	Introduction to Quantum Mechanics
3.	S. L. Powell & D Crasemann:	Quantum Mechanics
4.	L Pauling & B Wilson:	Quantum Mechanics
5.	V Rojansky:	Introduction Quantum Mechanics
6.	Gupta, Kumar, Sharma:	Quantum Mechanics
	-	-

Credit 03: (3 hours/ week)

Section-A

- 1. Nuclear Reactions by Neutrons: Neutron cross section and its determination; Energy dependence of neutron cross sections; Fission cross section.
- 2. Diffusion and Slowing Down of Neutron: Thermal neutron diffusion; Diffusion length and diffusion equations; Fast neutron diffusion and Fermi- Age equation; Energy distribution and cross section of thermal neutrons; The slowing down of neutrons; Transport mean free path and scattering cross section; Critical equation and reaction buckling.
- **3. Reactor Theory:** The steady state; Multiplication factor; The four factor formula; Neutron leakage and critical size; Calculation of K for homogenous reactors; Classification of reactors; Research reactors; Swimming pool water boiler; Power and Breeder reactors; Heterogeneous reactors; Calculation of K for heterogeneous reactors.

Section – B

- **4. Reactor Fuels:** The fuel cycle; Production of reach fuels; Sources of uranium; Separation of uranium isotopes; Reprocessing of irradiated fuel; Radioactive waste disposal.
- 5. Energy Removal: Thermal problems in reactors design; Design for cooling system; Heat sources in reactors systems; Reactor coolants.
- 6. Control of Nuclear Reactors: Reactor kinematics; <u>General factures of reactor control</u>; Effect of temperature on reactivity; Design of the control system and reactor operation; Fission product poisoning; Burnable poisons.

Recommended References:

1.	J.R. Lamarsh:	Introduction to Nuclear Engineering
2.	J. R. Lamarsh:	Introduction to Nuclear Reactor Theory
3.	S. E. Liverhant:	Elementary Introduction to Nuclear Physics
4.	R. L. Murray:	Introduction to Nuclear Engineering
5.	S Glasstone & A Sensonske:	Nuclear Reactor Engineering

Optional Courses:

PHY – 4209: Material Science Credit – 03 (3 hours/ week)

Section-A

- **1. Different Materials:** Engineering materials; Types of metals and alloys; Glassy metals; Non-metallic materials; Ceramics polymers; Composite materials and refractories.
- 2. **Renewable Energy Materials:** Biomass; Sources of biomass methods of obtaining energy; Wind energy; Water power; Tidal power; Solar cell; Principle of operation (reflection, absorption, generation, separation and collection of carriers efficiency); Types of solar cells (crystalline, amorphous, thin films).
- **3. Material Processing:** Sample preparation; Grinding; Polishing annealing; Normalizing; Quenching etching solid state reaction; Sintering etc.

- 4. Crystal Structure, Crystal Growth and Thin Films: Metallic crystals and their structure and packing factors; Nucleation; Homogeneous and heterogeneous nucleation; Growth modes and techniques; Sputtering; CVDLPE; MBE; MOCVD liquid crystals.
- 5. Characterization of Materials: Introduction; TGA determination of weight loss and decomposition products; DSC specific loss of heat capacity; measurements and determination of thermo chemical parameters; DTA determination of melting point; X-ray; Crystallite size analysis; Determination of lattice parameters; Principle of metallurgical microscope-SEM-TEM.
- 6. Surface Physics: Definition of surface; Description of surface structure; The TLK (Terrace Ledge Kink) model; Notation for surface structure; Vieinal surface; Real surfaces; Relaxation's reconstruction's defects; Surface states.

1	W Brostow:	Science of Materials
1.	W. DIOSIOW.	Science of Materials

- 2. E. Abdrson:
- *3. D. Rapp:*
- 4. R. C. Neville:
- 5. *A. V. Narlikers*:

Fundamentals of Solar Energy Conversion Solar Energy Solar Cell: Solar Energy Conversion Introduction to Superconductivity

PHY-4211: Methods of Experimental Physics Credit – 03 (3 hours/ week)

Section – A

- 1. **Optical and Spectroscopy Instruments:** Phase contrast and Polarising microscope; Spectro-Photometers; Optical transmittance; Reflectance and absorption co-efficients;
- **2. Electrical Measurements:** Potentiometer; High impedance voltmeters; Oscilloscope; DC Amplifier; Frequency meter and counter; Four point probe; Hall probe.
- **3. High and Ultra-high Vacuum:** Production and measurement of high and ultra high vacuum; Rotary pump; Diffusion pump. Ion pump; Turbo pump; Pirani Gauge; Penning and ionisation gauges.

Section – B

- 4. **Phase Sensitive Detection:** Lock-in amplifier; SCR type temperature controller.
- 5. Thin Film Technique: Production and characterization of thin film; Thickness measurement; Interferometric and gravi metric methods.
- 6. Gamma-Camera and NMR Transducer: Principle and operation of gamma camera; NMR and NMR imaging techniques.

Recommended References:

1.	Marton and Marton:	Methods of Experimental Physics Vol. 2
2.	J. Yarwood, Chapman and Hall:	High Vacuum Techniques
3.	Diefenderfer:	Principles of Electronic Instrumentation
5.	J. Brophy. N.Y:	Basic Electronics for Scientists
5.	Kings lake:	Applied Optics Vol. IV
6.	F.A. Jenkins and H.E White:	Fundamentals of Optics

PHY-4213: Particle and High Energy Physics Credit – 03 (3 hours/ week)

Section-A

- 1. **Basic Concepts:** Particle and antiparticle; Particles and interactions; Basic particles; Mass, energy and momentum in Einstein's mechanics; Relativistic wave equation; Hole theory and the positron; Feynman diagram; Particle exchange; Weak and strong interaction; Mediators of interactions; Bosons.
- 2. Non-Conservation of C, P, T and CP: Charge conjugation and Parity; C, P, T and CP violation; Muon decay asymmetries; The CP puzzle; Left handed neutrions and right handed anti-neutrinos; Neutral kaons; CP violation in K and B systems.
- **3. Cosmology and Astrophysics:** How old is the universe? The Big-bang explosion; Expanding of the universe; What is the universe made of?; <u>The drak matter mystery</u>; Formation of elements and early

universe; Oscillating universe; The Hubble expansion; The cosmic microwave background radiation; Radiative element dating.

Section – B

- 4. **Passage of Radiation Through Matter:** The cross section; Energy loss of heavy particles by collisions; Cerenkov radiation; Bremsstrahlung; Radiation length; Back scattering; The interaction of Photons; Radiation safety in high energy physics.
- 5. Experimental Methods: Accelerators; Linacs and synchrotrons; Fixed-target machines and colliders; Secondary beams; Particle interactions with matter; Short-interaction nuclei; Ionization energy losses; Radiation energy losses; Interactions of photons in matter; Particle detectors; Time resolution; Scintillation counters; Measurement of position; Measurement of momentum particle identification; Energy measurements; Calorimeters; Discovery of the J/ψ (3097); The Brookhaven experiment; The SLAC experiment; The Belle experiment at KEK.

Recommended References:

1.	B. R. Martin G. Shaw:	Particle Physics
2.	L. B Okun:	α , β , γ ,Z, A Primer in Particle Physics
3.	Dan Green:	Lectures in Particle Physics
4.	L. J Tassi:	Elementary Particle Physics
5.	W. R. Leo, Spring Verlag:	Techniques for Nuclear and Particle Physics Experiments
6.	Griffiths:	Introduction to Elementary Particles